Fourier got a hard time from his contemporaries, who could not accept that a square wave may be expressed as the infinite sum of a set of sin functions. Nowadays we are shown at an early stage of our (electronic communications) studies that Fourier was right. You could do worse than consult a communications text in your attempt to come to grips with this non-intuitive notion.
For the sake of decency I include the details of an infinite series which describes a square wave:
sq(t)=sin(t) + (1/3)sin(3t) + (1/5)sin(5t) + (1/7)sin(7t) + ...
Try plotting this series, successively using more and more terms, and you will see the square wave taking shape as you go.