Filter DC offset - apply High-pass filter (in time-domain or frequency domain?)

AI Thread Summary
To filter DC offset from a signal, a high-pass filter is effective as it attenuates low frequencies, including the DC component. This can be implemented using a coupling capacitor, which creates an open circuit for DC while allowing AC signals to pass. The filtering process can be performed in either the time-domain or frequency-domain, depending on the specific application and tools used, such as MATLAB. The filter's operation is based on its properties and the frequency of the input signal, where frequencies below the cutoff are significantly reduced. Understanding the filter's response is crucial, as it affects how different signal components are processed.
Roronoa Zoro
Messages
2
Reaction score
0
Hello all,

I want to filter DC offset for a signal by applying a high-pass filter to it (I've been told that to filter the DC offset this is what I should do - I'm not sure why exactly!)

My question is; do I do that in the time-domain or frequency-domain after applying FFT? And I would appreciate some explanation if possible.

Thanks.

Roronoa Zoro
 
Engineering news on Phys.org
think about DC offset as a signal with frequency of 0, a high pass filter will attenuate low frequencies, so at frequency of 0, all DC offset becomes attenuated (under steady state conditions).

The easiest way is to stick a capacitor (what we call a coupling capacitor) in the path of the signal, this effective creates an open circuit for DC. And if you choose your capacitance value correctly, its reactance at the frequency of your concerned signal will be negligible
 
Thank you wukunlin.

It's really hard for me to picture that. I can picture a sin wave that is shifted up/down the y-axis and I assume that this is the effect of a DC offset. Now when I apply the filter, how would the filter know that these are actually two signals, one 0 frequency signal and a sin signal in order to remove the 0 frequency signal? Am I missing something here?

And in programming (like Matlab), do I apply the filter in the time-domain of in the frequency-domain? Or does it not matter?
 
A DC voltage offset on a sinewave signal will charge up a series capacitor to the DC voltage and, from then on, the output will be zero volts DC with the sinewave varying the output voltage positively and negatively about this zero volt level.

The filter doesn't "know" anything. What gets through a filter just depends on the properties of the filter and the frequency that is applied to it.

For example, a sinewave only has one frequency, so applying a sinewave to a high-pass filter will produce an output that varies according to the frequency of the sinewave.

If its frequency was below the cutoff frequency, the output would ideally be zero, but at least it should be greatly reduced compared with the input.

If its frequency was above the cutoff frequency, the output should ideally be the same as the input. It will be less attenuated than below the cutoff frequency anyway.

If the frequency was varied, then you could trace out a frequency response of the filter. Filters are rarely perfect, so this is worth doing.

A square wave contains the fundamental frequency plus odd harmonics of that frequency.
So, a 1000 Hz square wave will contain components of 1000 Hz , 3000 Hz , 5000 Hz etc
If this was applied to a high pass filter with a cutoff of 2000 Hz, the result would be a distorted waveform that looked hardly like a square wave at all. It would have a dip in the normally flat top and bottom of the square wave.
 
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
I am not an electrical engineering student, but a lowly apprentice electrician. I learn both on the job and also take classes for my apprenticeship. I recently wired my first transformer and I understand that the neutral and ground are bonded together in the transformer or in the service. What I don't understand is, if the neutral is a current carrying conductor, which is then bonded to the ground conductor, why does current only flow back to its source and not on the ground path...
Back
Top