VinnyCee
- 486
- 0
Find a polynomial of degree < 2 [a polynomial of the form f\left(t\right)\,=\,a\,+\,bt\,+\,ct^2] whose graph goes through the points (1, p), (2, q), (3, r), where p, q, r are arbitrary constants. Does such a polynomial exist for all values of p, q, r?
Here is what I have so far:
(1, p) ==> p\,=\,a\,+\,b\,+\,c
(2, q) ==> q\,=\,a\,+\,2b\,+\,4c
(3, r) ==> r\,=\,a\,+\,3b\,+\,9c
\begin{displaymath}<br /> \left[ \begin{array}{ccc|c}<br /> 1 & 1 & 1 & p \\<br /> 1 & 2 & 4 & q \\<br /> 1 & 3 & 9 & r<br /> \end{array} \right]<br /> \end{displaymath}
R_2\,=\,R_2\,-\,R_1
R_3\,=\,R_3\,-\,R_1
\begin{displaymath}<br /> \left[ \begin{array}{ccc|c}<br /> 1 & 1 & 1 & p \\<br /> 0 & 1 & 3 & q - p \\<br /> 0 & 2 & 8 & r - p<br /> \end{array} \right]<br /> \end{displaymath}
R_3\,=\,R_3\,-\,2R_2
\begin{displaymath}<br /> \left[ \begin{array}{ccc|c}<br /> 1 & 1 & 1 & p \\<br /> 0 & 1 & 3 & q - p \\<br /> 0 & 0 & 2 & r - q<br /> \end{array} \right]<br /> \end{displaymath}
R_3\,=\frac{1}{2}\,R_3
\begin{displaymath}<br /> \left[ \begin{array}{ccc|c}<br /> 1 & 1 & 1 & p \\<br /> 0 & 1 & 3 & q - p \\<br /> 0 & 0 & 1 & \frac{1}{2}\left(r - q\right)<br /> \end{array} \right]<br /> \end{displaymath}
R_2\,=\,R_2\,-\,3R_3
\begin{displaymath}<br /> \left[ \begin{array}{ccc|c}<br /> 1 & 1 & 1 & p \\<br /> 0 & 1 & 0 & \frac{5}{2}\,q\,-\,p\,-\,\frac{3}{2}\,r \\<br /> 0 & 0 & 1 & \frac{1}{2}\left(r - q\right)<br /> \end{array} \right]<br /> \end{displaymath}
R_1\,=\,R_1\,-\,R_2\,-\,R_3
\begin{displaymath}<br /> \left[ \begin{array}{ccc|c}<br /> 1 & 0 & 0 & 2p\,-\,2q\,+\,r \\<br /> 0 & 1 & 0 & \frac{1}{2}\left(5q\,-\,2p\,-\,3r\right) \\<br /> 0 & 0 & 1 & \frac{1}{2}\left(r - q\right)<br /> \end{array} \right]<br /> \end{displaymath}
a\,=\,2p\,-\,2q\,+\,r
b\,=\,\frac{1}{2}\,\left(5q\,-\,2p\,-\,3r\right)
c\,=\,\frac{1}{2}\,\left(r\,-\,q\right)
f\left(t\right)\,=\,a\,+\,bt\,+\,ct^2
f\left(t\right)\,=\,\left(2p\,-\,2q\,+\,r\right)\,+\,\left[\frac{1}{2}\,\left(5q\,-\,2p\,-\,3r\right)\right]\,t\,+\,\left[\frac{1}{2}\,\left(r\,-\,q\right)\right]\,t^2
f\left(t\right)\,=\frac{1}{2}\,r\,t^2\,-\,\frac{1}{2}\,q\,t^2\,+\,\frac{5}{2}\,q\,t\,-\,\frac{3}{2}\,r\,t\,-\,p\,t\,+\,2\,p\,+\,r\,-\,2\,q
But when I try a set of arbitrary numbers [(1, 8), (2, 12), (3, 3)], I get an equation that does not match the points:
f\left(t\right)\,=\,-\frac{9}{2}\,t^2\,+\,\frac{35}{2}\,t\,-\,5
f\left(1\right)\,=\,-\frac{9}{2}\,(1)^2\,+\,\frac{35}{2}\,(1)\,-\,5\,=\,8
f\left(2\right)\,=\,-\frac{9}{2}\,(2)^2\,+\,\frac{35}{2}\,(2)\,-\,5\,=\,12
f\left(3\right)\,=\,-\frac{9}{2}\,(3)^2\,+\,\frac{35}{2}\,(3)\,-\,5\,=\,7
However, f\left(3\right) should be equal to r, which is 3, not 7.
Please help:)
Here is what I have so far:
(1, p) ==> p\,=\,a\,+\,b\,+\,c
(2, q) ==> q\,=\,a\,+\,2b\,+\,4c
(3, r) ==> r\,=\,a\,+\,3b\,+\,9c
\begin{displaymath}<br /> \left[ \begin{array}{ccc|c}<br /> 1 & 1 & 1 & p \\<br /> 1 & 2 & 4 & q \\<br /> 1 & 3 & 9 & r<br /> \end{array} \right]<br /> \end{displaymath}
R_2\,=\,R_2\,-\,R_1
R_3\,=\,R_3\,-\,R_1
\begin{displaymath}<br /> \left[ \begin{array}{ccc|c}<br /> 1 & 1 & 1 & p \\<br /> 0 & 1 & 3 & q - p \\<br /> 0 & 2 & 8 & r - p<br /> \end{array} \right]<br /> \end{displaymath}
R_3\,=\,R_3\,-\,2R_2
\begin{displaymath}<br /> \left[ \begin{array}{ccc|c}<br /> 1 & 1 & 1 & p \\<br /> 0 & 1 & 3 & q - p \\<br /> 0 & 0 & 2 & r - q<br /> \end{array} \right]<br /> \end{displaymath}
R_3\,=\frac{1}{2}\,R_3
\begin{displaymath}<br /> \left[ \begin{array}{ccc|c}<br /> 1 & 1 & 1 & p \\<br /> 0 & 1 & 3 & q - p \\<br /> 0 & 0 & 1 & \frac{1}{2}\left(r - q\right)<br /> \end{array} \right]<br /> \end{displaymath}
R_2\,=\,R_2\,-\,3R_3
\begin{displaymath}<br /> \left[ \begin{array}{ccc|c}<br /> 1 & 1 & 1 & p \\<br /> 0 & 1 & 0 & \frac{5}{2}\,q\,-\,p\,-\,\frac{3}{2}\,r \\<br /> 0 & 0 & 1 & \frac{1}{2}\left(r - q\right)<br /> \end{array} \right]<br /> \end{displaymath}
R_1\,=\,R_1\,-\,R_2\,-\,R_3
\begin{displaymath}<br /> \left[ \begin{array}{ccc|c}<br /> 1 & 0 & 0 & 2p\,-\,2q\,+\,r \\<br /> 0 & 1 & 0 & \frac{1}{2}\left(5q\,-\,2p\,-\,3r\right) \\<br /> 0 & 0 & 1 & \frac{1}{2}\left(r - q\right)<br /> \end{array} \right]<br /> \end{displaymath}
a\,=\,2p\,-\,2q\,+\,r
b\,=\,\frac{1}{2}\,\left(5q\,-\,2p\,-\,3r\right)
c\,=\,\frac{1}{2}\,\left(r\,-\,q\right)
f\left(t\right)\,=\,a\,+\,bt\,+\,ct^2
f\left(t\right)\,=\,\left(2p\,-\,2q\,+\,r\right)\,+\,\left[\frac{1}{2}\,\left(5q\,-\,2p\,-\,3r\right)\right]\,t\,+\,\left[\frac{1}{2}\,\left(r\,-\,q\right)\right]\,t^2
f\left(t\right)\,=\frac{1}{2}\,r\,t^2\,-\,\frac{1}{2}\,q\,t^2\,+\,\frac{5}{2}\,q\,t\,-\,\frac{3}{2}\,r\,t\,-\,p\,t\,+\,2\,p\,+\,r\,-\,2\,q
But when I try a set of arbitrary numbers [(1, 8), (2, 12), (3, 3)], I get an equation that does not match the points:
f\left(t\right)\,=\,-\frac{9}{2}\,t^2\,+\,\frac{35}{2}\,t\,-\,5
f\left(1\right)\,=\,-\frac{9}{2}\,(1)^2\,+\,\frac{35}{2}\,(1)\,-\,5\,=\,8
f\left(2\right)\,=\,-\frac{9}{2}\,(2)^2\,+\,\frac{35}{2}\,(2)\,-\,5\,=\,12
f\left(3\right)\,=\,-\frac{9}{2}\,(3)^2\,+\,\frac{35}{2}\,(3)\,-\,5\,=\,7
However, f\left(3\right) should be equal to r, which is 3, not 7.
Please help:)
Last edited: