Find exit speed at the bottom of the ramp using kinematics only

AI Thread Summary
The discussion centers on calculating the exit speed of a skier at the bottom of a ramp using kinematics, considering the effects of friction and air resistance. The skier's initial acceleration is 90% of that on a frictionless incline, and the speed record at the bottom of a 29-degree slope is 180 km/h. The initial calculations led to an exit speed of 223.7 km/h, but this was incorrect due to not accounting for the 90% acceleration factor. The correct approach involves adjusting the acceleration to reflect the frictional loss. Ultimately, the skier's ideal speed in the absence of air resistance is lower than initially calculated.
spartan55
Messages
4
Reaction score
0

Homework Statement


A professional skier's initial acceleration on fresh snow is 90% of the acceleration expected on a frictionless, inclined plane, the loss being due to friction. Due to air resistance, his acceleration slowly decreases as he picks up speed. The speed record on a mountain in Oregon is 180 kilometers per hour at the bottom of a 29.0deg slope that drops 197 m. What exit speed could a skier reach in the absence of air resistance (in km/hr)? What percentage of this ideal speed is lost to air resistance?


Homework Equations


We are only on kinematics...
(v_final)^2 = (v_initial)^2 + 2*(a_parallel)*(x_final - x_initial) , where a_parallel = g*sin(29)


The Attempt at a Solution


I used trig to solve for the length of the ramp:
l*sin29 = 197
l = 406.35 m
Then I plugged this into the above kinematics equation and solved for v_final:
(v_final)^2 = 0 + 2*g*sin(29)*(406.35 - 0)
v_final = 62.14 m/s
I converted this to km/hr:
62.14 m/1s * 1km/1000m * 3600s/1hr = 223.7 km/hr, but this isn't the correct answer. I'm not sure where I went wrong.
 
Physics news on Phys.org
spartan55 said:

Homework Statement


A professional skier's initial acceleration on fresh snow is 90% of the acceleration expected on a frictionless, inclined plane, the loss being due to friction. Due to air resistance, his acceleration slowly decreases as he picks up speed. The speed record on a mountain in Oregon is 180 kilometers per hour at the bottom of a 29.0deg slope that drops 197 m. What exit speed could a skier reach in the absence of air resistance (in km/hr)? What percentage of this ideal speed is lost to air resistance?


Homework Equations


We are only on kinematics...
(v_final)^2 = (v_initial)^2 + 2*(a_parallel)*(x_final - x_initial) , where a_parallel = g*sin(29)


The Attempt at a Solution


I used trig to solve for the length of the ramp:
l*sin29 = 197
l = 406.35 m
Then I plugged this into the above kinematics equation and solved for v_final:
(v_final)^2 = 0 + 2*g*sin(29)*(406.35 - 0)
v_final = 62.14 m/s
I converted this to km/hr:
62.14 m/1s * 1km/1000m * 3600s/1hr = 223.7 km/hr, but this isn't the correct answer. I'm not sure where I went wrong.
Look at the phrase in red, especially the 90%.
 
Ahh yes that is what I forgot. Thanks Sammy!
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top