##f(x) = x + \frac{1}{\pi} \int_{0}^{\pi} f(t) \sin^2{t} \ d(t)##
## \int_{0}^{\pi} f(t) \sin^2{t} \ d(t)## = constant
I just get that it is constant because its variable doesn't depend on any x variable in f(x). because its variable is t .
Is it true?
set ## \int_{0}^{\pi} f(t) \sin^2{t} \ d(t)## as c for example
so, ##f(x) = x + \frac{1}{\pi} \int_{0}^{\pi} f(t) \sin^2{t} \ d(t)## become : ##f(x) = x + \frac{c}{\pi} ##
solve ## c = \int_{0}^{\pi} f(t) \sin^2{t} \ d(t)##
##f(x) = x + \frac{c}{\pi} ##
##f(t) = t + \frac{c}{\pi} ##
c =## \int_{0}^{\pi} f(t) \sin^2{t} \ d(t)##
c = ##\int_{0}^{\pi} (t + \frac{c}{\pi} ) \sin^2{t} \ d(t)##
= ##\int_{0}^{\pi} (t + \frac{c}{\pi} ) \frac{1}{2}(1 - \cos 2t) \ d(t)##
= ##\int_{0}^{\pi} (t \frac{1}{2}(1 - \cos 2t) + \frac{c}{\pi} \frac{1}{2}(1 - \cos 2t) \ d(t) )##
= ## \frac{1}{2} [ \int_{0}^{\pi}t \ d(t) - \int_{0}^{\pi} \cos 2t \ d(t) ] + \frac{c}{\pi} \frac{1}{2}[ \int_{0}^{\pi} \ d(t) - \int_{0}^{\pi} \cos 2t \ d(t) ]##
c = ## \frac{ \pi^2}{4} + \frac{c}{2} ##
##\frac{c}{2} ## = ## \frac{ \pi^2}{4}##
c = ## \frac{ \pi^2}{2}##
##f(x) = x + \frac{c}{\pi} ##
##f(x) = x + \frac{\frac{ \pi^2}{2}}{\pi} ##
##f(x) = x + \frac{ \pi}{2}##
Thanks for the explanation before
CMIIW