Find Limit of (tan x)^(tan 2x) as x approaches pi/4 | Tan() Homework

  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Limit Tan
juantheron
Messages
243
Reaction score
1

Homework Statement


\displaystyle \lim_{x\rightarrow \frac{\pi}{4}}\left(\tan x\right)^{\tan 2x}


Homework Equations





The Attempt at a Solution



let \frac{\pi}{4}-x = t\Leftrightarrow x=\frac{\pi}{4}-t and t\rightarrow 0 \lim_{t\rightarrow 0}\left(\tan \left(\frac{\pi}{4}-t\right)\right)^{\tan \left(\frac{\pi}{2}-2t\right)}
\lim_{t\rightarrow 0}\left(\frac{1-\tan t}{1+\tan t}\right)^{\frac{1}{\tan 2t}}
as t\rightarrow 0,\tan t\approx t,\tan 2t\approx 2t
\lim_{t\rightarrow 0}\left(\frac{1- t}{1+ t}\right)^{\frac{1}{2t}}
after that how can i solve
 
Physics news on Phys.org
hi juantheron! :smile:

lim (1/(1 - t)) = 1 + … ? :wink:
 


Use the fact that \displaystyle \lim f(x)=e^{\lim\ln(f(x))}.

In evaluating lim(ln(f(x)), use L'Hôpital's rule.
 


SammyS's method is much closer to the most effective method I can think of.

Use
AB = (e ln A)B = e B * ln A

Note: tan x is always positive in the vicinity we are interested in, so ln A is well defined.

Apply L'Hospital's rule to the power.

For oo * 0 forms, we need \frac {oo} {\frac{1}{0}} or \frac{0} {\frac{1}{oo}} before we can apply L'Hospital's rule.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top