Find Limit using L'Hospital Rule: e^x / (e^x + 7x)

  • Thread starter Thread starter naspek
  • Start date Start date
naspek
Messages
176
Reaction score
0
Find the following limit using L'Hospital rule..

lim...(e^x) / [(e^x) + 7x]
x->infinity

= f'(x) / g'(x)
=e^x / (e^x) + 7
= infinity/infinity
=0
am i got it right?
 
Physics news on Phys.org
naspek said:
Find the following limit using L'Hospital rule..

lim...(e^x) / [(e^x) + 7x]
x->infinity

= f'(x) / g'(x)
=e^x / (e^x) + 7
Okay to here

= infinity/infinity
What does that mean?

=0
Why would you think that?

am i got it right?
One you have e^x/(e^x+ 7) either use L'Hospital's rule again or divide both numerator and denominator by e^x.
 
e^x/e^x = 1 ?
 
Err... wait. You said: when I take the limit directly I get infinity / infinity, which is not defined. So we need L'Hôpitals rule. I agree with that.
Then you take the derivatives, and get infinity / infinity again. Then suddenly, that is defined and equal to 0?

The idea is, that
\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}
in this case, but on the right hand side you get something which is still of the form "infinity / infinity". So you will need to apply it again.

Afterwards, to check your answer, you could try multiplying numerator and denominator by exp(-x).
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top