Find magnitude of the magnetic field

AI Thread Summary
To determine the magnetic field's magnitude at a point on the y-axis due to a current-carrying wire, the formula dB = (μ/4π) ((Ids x r)/r^2) is used. A small element dx along the wire is considered, with its distance from the point on the y-axis calculated as sqrt(x^2 + y^2). The integration of the magnetic field contributions from the wire segment is necessary, leading to the expression B = μo/4π*I*∫[x*dx/(x^2 + y^2)^(3/2)]. The integration limits range from x = 0 to x = 3 cm, and the final equation for the magnetic field is derived as B = - μo/4π*I/sqrt(x^2 + y^2). Understanding the integration process is crucial for solving the problem accurately.
define_normal
Messages
5
Reaction score
0

Homework Statement



A wire carries a current of 30A along the x-axis from x = 0 to x = 3.0 cm. Determine the magnitude in uT of the magnetic field at the point y = 4.0 cm on the y-axis.


Homework Equations



dB = (u/4pi) ((Ids x r)/r^2)

The Attempt at a Solution



We tried using this formula, but it didn't work. We are lost. Please help! Be descriptive if you can.
 
Physics news on Phys.org


define_normal said:

Homework Statement



A wire carries a current of 30A along the x-axis from x = 0 to x = 3.0 cm. Determine the magnitude in uT of the magnetic field at the point y = 4.0 cm on the y-axis.

Homework Equations


dB = (u/4pi) ((Ids x r)/r^2)
If you take a small element dx on x-axis at a distance x from the origin, its distance from a point on the y-axis is sqrt(x^2 + y^2)
Now (dx)xr = dx*sinθ, where r is the unit vector along r and θ is the angle between r and y-axis.
sinθ = x/sqrt(x^2 + y^2)
Substitute these values in dB and take the integration from x = 0 to x = 4
 


We don't understand how we're supposed to integrate. Isn't there an R^2 in the bottom?
 


define_normal said:
We don't understand how we're supposed to integrate. Isn't there an R^2 in the bottom?
Yes. It is there.
B = μο/4π*I*Intg[ sinθ*dx/( x^2 + y^2 )
If you substitute the value of sinθ,the expression becomes
B = μο/4π*I*Intg[ x*dx/( x^2 + y^2 )^3/2
Now find the integration and substitute the limits.
 


Can you write out what would be the exact (B=) equation?
 


amdemare said:
Can you write out what would be the exact (B=) equation?
B = - μo/4π*I/sqrt(x^2 + Y^2)
 
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top