SEG9585
- 34
- 0
Homework Statement
Find the node points (zero displacement) for a clamped-pinned and clamped-spring beam.
I am trying to figure out how to find these points on a beam of length L (constant E*I,m) for the first 3 natural frequencies.
Homework Equations
The Attempt at a Solution
\upsilon(x,t) = \sum \phi(x)*\zeta(t)
ODE:
\phi''(x) - \omega\phi(x) = F
General solution:
\phi(x) = A*sinh(\alpha*x) + B*cos(\alpha*x) - C*sin(\alpha*x) - D*cosh*(\alpha*x)
A,B,C,D to be found using boundary conditions (in this case clamped-pinned):
\phi(0)=0
\phi'(0)=0
\phi(L)=0
\phi''(L)=0My question is: the mode shape can be found by solving for the constants, etc. But how can you analytically find the zeros for this? The solution is non-linear. Is there another method I can use to find the node points?