Find probability of spin state after certain time.

baouba
Messages
40
Reaction score
0

Homework Statement


Question: http://imgur.com/YzexPKl (only part c)

Homework Equations


From part a) I got |psi> = (1/sqrt(2))(e^(iwt/2)|z-up> + ie^(-iwt/2)|z-down>
I expanded this wave function in the x-spin basis and got,
|psi> = (1/(2))[(e^(iwt/2)+ie^(-iwt/2))|x-up> + (e^(iwt/2)-ie^(-iwt/2))|x-down>

The Attempt at a Solution


I know the probability of |psi> being in some sate |q> is P = |<q|psi>|^2 but how does this change after the wavefunction has already collapsed once? Since we're making a measurement should it be P = |<x-up|Sx|psi>|^2? where Sx is the x-spin operator? I just don't get that if that's the case, since we know the first measurement is |x-up> we'd get Sx|psi> = Sx|x-up>, then |<x-up|Sx|psi>|^2 = |<x-up|Sx|x-up>|^2 =|sx|^2 where sx is the Sx operator's eigenvalue?
 
Physics news on Phys.org
baouba said:
Since we're making a measurement should it be P = |<x-up|Sx|psi>|^2?
No, that's not a probability.
In part c, your starting state is ##|x;+\rangle## because as you have realized the previous state collapsed upon measurement to this state. Then this state is let evolve for a time interval ##\Delta t = \pi/\omega## in a Hamiltonian ##H = -\omega S_z##. At the end of that interval, you are asked to calculate the probability for the state.##|x;+\rangle##.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top