MHB Find the average force required to hold the gun in position

AI Thread Summary
To find the average force required to hold a gun in position while firing, the impulse equation is applied, where force multiplied by time equals mass multiplied by change in velocity. Each bullet has a mass of 3 grams and a speed of 500 m/s, leading to a calculated momentum for one bullet, which is then multiplied by six for the total momentum of all bullets fired per second. Consistent unit conversion is crucial, either converting grams to kilograms for force in Newtons or speed to centimeters per second for force in dynes. Calculating impulse for one bullet over a shorter time frame yields the same force as for six bullets over one second. The discussion also includes a light-hearted side note about typing preferences on mobile devices.
Joe_1234
Messages
24
Reaction score
0
A gun fires 6 bullets per second into a target. The mass of each bullet is 3g & the speed of 500 m/s. Find the average force required to hold the gun in position.
 
Mathematics news on Phys.org
Impulse equation ...

$F \cdot \Delta t = m \cdot \Delta v$
 
skeeter said:
Impulse equation ...

$F \cdot \Delta t = m \cdot \Delta v$
Tnx
 
You titled this "momentum" so it looks like you already knew the basic idea. The momentum of a single bullet is "mass times velocity" and you are given both of those. Of course, the momentum of 6 bullets is 6 times the momentum of a single bullet. Since this all happens in one second, divide by one second to get the force.

Be careful to use consistent units. You are given the mass in grams and the speed in m per second. Either convert mass to kg to get the force in Newtons or convert the speed to cm per second to get the force in dynes. I recommend the former.
 
Last edited by a moderator:
HallsofIvy said:
You titled this "momentum" so it looks like you already knew the basic idea. The momentum of a single bullet is "mass times velocity" and you are given both of those. Of course, the momentum of 6 bullets is 6 times the momentum of a single bullet. Since this all happens in one second, divide by one second to get the force.

calculating the impulse for one bullet over $\Delta t = \frac{1}{6} \text{ sec}$ yields the same result as six bullets in $\Delta t = 1 \text{ sec}$
 
Joe_1234 said:
Tnx
Serious question - is it harder to type “thanks” or “tnx “ on your phone? On mine the latter will auto correct to something else so it’s actually harder.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top