Hernaner28
- 261
- 0
Homework Statement
It's a cilinder of mass M and radius R rolling without slipping and I'm asked to find the maximum value of the static friction coefficient for the cilinder to roll without slipping.
Homework Equations
Non-slip conditions:
\displaystyle v=\omega R
\displaystyle a=\alpha R
Torque:
\displaystyle \tau =I\alpha
The Attempt at a Solution
Net force in axis X (my axis is along with the inclined plane):
\displaystyle -mg\sin \theta -{{\mu }_{s}}N=ma
Equation in axis y will give me the normal force:
\displaystyle N=mg\cos \theta
So:
\displaystyle -mg\sin \theta -{{\mu }_{s}}mg\cos \theta =ma
Solving for u:
\displaystyle {{\mu }_{s}}=\frac{-g\sin \theta -a}{g\cos \theta }=\frac{-g\sin \theta -\alpha R}{g\cos \theta }
So I need to find out the angular aceleration:
\displaystyle \tau =I\alpha
\displaystyle -{{\mu }_{s}}mg\cos \theta \cdot R=\frac{1}{2}m{{R}^{2}}\cdot \alpha
\displaystyle \alpha =\frac{-2g{{\mu }_{s}}\cos \theta }{R}
Replacing alpha in the equation I get that:
\displaystyle {{\mu }_{s}}\le \tan \theta
But the option marked as correct is:
\displaystyle {{\mu }_{s}}\ge \frac{\tan \theta }{3}
any help?
Thanks!