Find the D value of critical point and the type of critical point

coolusername
Messages
36
Reaction score
0

Homework Statement



The function f(x,y) = [e^(-y^2)]cos(4x) has a critical point (0,0)

Homework Equations



Find the D value at the critical point. What type of critical point is it? (max, min, saddle or none)

The Attempt at a Solution



I know that to find the D value I must compute the partial derivatives (fox, fey, fxy and fyx)

fx = [-4e^(-y^2)]sin(4x)

fy = [-2ye^(-y^2)]cos(4x)

fxx = [-16e^(-y^2)](cos(4x)

fyy = [4(y^2)e^(-y^2)]cos(4x)

fxy = [8ye^(-y^2)]sin(4x)

fxy = [8ye^(-y^2)]sin(4x)

D = (fxx)(fyy) - (fxy)^2
= [-16e^(-y^2)](cos(4x)[4(y^2)e^(-y^2)]cos(4x) - {[8ye^(-y^2)]sin(4x)}^2

evaluated at the critical point (0,0)

= (-16)(0) - (0)(0)
= 0

This means that the 2nd derivative test gave no info. But somehow it's not the right answer. Did I find the correct value of D? Is my approach correct?

Thanks
 
Physics news on Phys.org
Having the discriminant be zero doesn't mean there is no max or min. In your case, ##f(0,0)=1##. Can you tell from the original equation whether that might be a max or min?
 
  • Like
Likes 1 person
I see from the original equation that the max of f(x,y) is 1. However what would the value of D be? Did I calculate it correctly? I keep getting 0 but since the critical point has a max behaviour then shouldn't D be more than 0?
 
coolusername said:

Homework Statement



The function f(x,y) = [e^(-y^2)]cos(4x) has a critical point (0,0)

Homework Equations



Find the D value at the critical point. What type of critical point is it? (max, min, saddle or none)

The Attempt at a Solution



I know that to find the D value I must compute the partial derivatives (fox, fey, fxy and fyx)

fx = [-4e^(-y^2)]sin(4x)

fy = [-2ye^(-y^2)]cos(4x)

fxx = [-16e^(-y^2)](cos(4x)

fyy = [4(y^2)e^(-y^2)]cos(4x)

fxy = [8ye^(-y^2)]sin(4x)

fxy = [8ye^(-y^2)]sin(4x)

D = (fxx)(fyy) - (fxy)^2
= [-16e^(-y^2)](cos(4x)[4(y^2)e^(-y^2)]cos(4x) - {[8ye^(-y^2)]sin(4x)}^2

evaluated at the critical point (0,0)

= (-16)(0) - (0)(0)
= 0

This means that the 2nd derivative test gave no info. But somehow it's not the right answer. Did I find the correct value of D? Is my approach correct?

Thanks

Your second derivative ##f_{yy}## is incorrect; it should not be 0 at (0,0), and ##D(0,0) \neq 0##.
 
  • Like
Likes 1 person
Oh, I forgot to do the product rule on fy thus my fyy was incorrect.

Thanks LCKurtz & Ray Vickson!
 
coolusername said:
I see from the original equation that the max of f(x,y) is 1. However what would the value of D be? Did I calculate it correctly? I keep getting 0 but since the critical point has a max behaviour then shouldn't D be more than 0?

Regardless of the calculation error that I overlooked, the discriminant can be zero even though there is a relative max or min. This is even true in one variable. Consider ##y=x^4##. This has an absolute min at ##x=0## yet ##y'=0## and ##y''=0## at ##x=0## so the second derivative test fails to discriminate the relative min.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top