Find the electric field at a point away from two charged rods

Click For Summary

Homework Help Overview

The discussion revolves around calculating the electric field at a specific point due to two charged rods with different charge densities. The left rod has a positive charge density of +3μC/m, while the right rod has a negative charge density of -4μC/m. The point of interest is located 0.7m from the end of the left rod, and the problem involves integrating the electric field contributions from both rods.

Discussion Character

  • Exploratory, Assumption checking, Problem interpretation

Approaches and Questions Raised

  • Participants discuss the integration of the electric field equation and the contributions from both rods. There are questions about the justification of significant figures in the final answer and the implications of using an algorithm for scoring. Some participants express confusion about the correctness of their calculations and the use of variable names in equations.

Discussion Status

There is an ongoing exploration of the electric field calculations, with some participants agreeing on the derived answer while others question its correctness based on significant figures. The discussion reflects a mix of interpretations regarding the integration process and the impact of scoring algorithms on the final answer.

Contextual Notes

Participants note that the problem may be subject to specific scoring criteria, which could affect the acceptance of their answers based on significant figures. There is also mention of potential confusion arising from variable naming conventions in the equations used.

Jaccobtw
Messages
167
Reaction score
32
Homework Statement
Two rods that are each 1m in length are arranged on an axis so that their ends are 1m apart as shown. The left rod has a charge density λ=+3μC/m and the right rod has a charge density λ=−4μC/m. What is the magnitude of the electric field at the point shown, which is 0.7m from the end of the left rod? Answer in N/C.
Relevant Equations
dE = (kλdx)/(x+a)^2
λ1 = 3 microC/m λ2= -4 microC/m
__________ . __________
l----L1---l-a1-l-a2-l-----L2---l
(Not to scale)

L1 = length of rod 1 (1m)
a1 = length of end of rod 1 to point (0.7m)
L2 = length of rod 2 (1m)
a2 = length of end of rod 2 to point (0.3m)
k = e field constant (9.0e9)

Integrate both sides of dE = (kλdx)/(x+a)^2 from 0 to L

Eventually you get (kλ)(1/a - 1/(a+L))
Because the electric field is positive from the left rod and negative from the right rod, we know the electric field will point to the right at the point so we can add the electric fields together.

((λ1k)(1/a1 - 1/(a1+L1)) + ((λ2k)(1/a2 - 1/(a2+L2))Plug in numbers and add together:

114997 N/C
 
Physics news on Phys.org
Here's the problem
 

Attachments

  • Screenshot (92).png
    Screenshot (92).png
    8.9 KB · Views: 262
My final answer with symbols
 

Attachments

  • IMG-0755.jpg
    IMG-0755.jpg
    46.2 KB · Views: 235
Jaccobtw said:
Homework Statement:: Two rods that are each 1m in length are arranged on an axis so that their ends are 1m apart as shown. The left rod has a charge density λ=+3μC/m and the right rod has a charge density λ=−4μC/m. What is the magnitude of the electric field at the point shown, which is 0.7m from the end of the left rod? Answer in N/C.
Relevant Equations:: dE = (kλdx)/(x+a)^2

λ1 = 3 microC/m λ2= -4 microC/m
__________ . __________
l----L1---l-a1-l-a2-l-----L2---l
(Not to scale)

L1 = length of rod 1 (1m)
a1 = length of end of rod 1 to point (0.7m)
L2 = length of rod 2 (1m)
a2 = length of end of rod 2 to point (0.3m)
k = e field constant (9.0e9)

Integrate both sides of dE = (kλdx)/(x+a)^2 from 0 to L

Eventually you get (kλ)(1/a - 1/(a+L))
Because the electric field is positive from the left rod and negative from the right rod, we know the electric field will point to the right at the point so we can add the electric fields together.

((λ1k)(1/a1 - 1/(a1+L1)) + ((λ2k)(1/a2 - 1/(a2+L2))Plug in numbers and add together:

114997 N/C
Looks right to me, except that you are quoting an unjustified number of digits. The way the given data are written, you can only justify one significant figure, but I would excuse two.
 
  • Like
Likes   Reactions: Jaccobtw
haruspex said:
Looks right to me, except that you are quoting an unjustified number of digits. The way the given data are written, you can only justify one significant figure, but I would excuse two.
I would agree with you 100% if this answer were scored by a human. This one appears to be scored by an algorithm. In such cases there is a percentage tolerance, often set by the instructor, before the algorithm declares an answer incorrect. The (unfortunate) message is that one cannot go wrong if one specifies too many sig figs whilst it is possible for a correctly derived answer to be marked incorrect if there are too few sig figs.
 
  • Like
Likes   Reactions: SolarisOne and Jaccobtw
haruspex said:
Looks right to me, except that you are quoting an unjustified number of digits. The way the given data are written, you can only justify one significant figure, but I would excuse two.
I tried $$ E = \frac{\lambda k_e}{a} - \frac{\lambda k_e}{a + L}$$ for the integration
 
Last edited:
Jaccobtw said:
I tried $$ E = \frac{\lambda k_e}{a} - \frac{\lambda k_e}{a + L}$$ for the integration
Sorry, I don't understand what that has to do with my comment.
kuruman said:
one cannot go wrong if one specifies too many sig figs
Unless the algorithm checks that.
 
kuruman said:
I would agree with you 100% if this answer were scored by a human. This one appears to be scored by an algorithm. In such cases there is a percentage tolerance, often set by the instructor, before the algorithm declares an answer incorrect. The (unfortunate) message is that one cannot go wrong if one specifies too many sig figs whilst it is possible for a correctly derived answer to be marked incorrect if there are too few sig figs.
I'm confused because I got the answer wrong but this is what I used:
$$ E = \frac{\lambda k_e}{a} - \frac{\lambda k_e}{a + L} + \frac{\lambda k_e}{a} - \frac{\lambda k_e}{a + L}$$

I plug in the values for one rod and add it to the values of the other rod. Is this correct?
 
Jaccobtw said:
I'm confused because I got the answer wrong but this is what I used:
$$ E = \frac{\lambda k_e}{a} - \frac{\lambda k_e}{a + L} + \frac{\lambda k_e}{a} - \frac{\lambda k_e}{a + L}$$

I plug in the values for one rod and add it to the values of the other rod. Is this correct?
I get the same answer as you do.
Do you know what the official answer is?

Btw, please don’t use exactly the same name for two different variables, particularly not in the one equation! Use subscripts, as you did in post #1.
 
  • Like
Likes   Reactions: Jaccobtw
  • #10
haruspex said:
I get the same answer as you do.
So do I.
 
  • Like
Likes   Reactions: Jaccobtw
  • #11
haruspex said:
I get the same answer as you do.
Do you know what the official answer is?

Btw, please don’t use exactly the same name for two different variables, particularly not in the one equation! Use subscripts, as you did in post #1.
May I know what is the exact answer for this question? 114997 still incorrect for this question.
 
  • #12
Charles Teoh said:
May I know what is the exact answer for this question? 114997 still incorrect for this question.
Since @kuruman and I agree with the OP's answer, you can be reasonably sure it is correct.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
6
Views
4K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 3 ·
Replies
3
Views
6K
  • · Replies 68 ·
3
Replies
68
Views
8K
  • · Replies 35 ·
2
Replies
35
Views
4K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
7K