Find the formula for X=tP+sQ under a translation and a rotation

KitKat21
Messages
2
Reaction score
0

Homework Statement


A group of American physicist works on a project where planar lines are in the form X=tP+sQ, where P and Q are two fixed different points and s, t are varying reals satisfying s+t=1. They need to know formulae for the images of the line X=tP+sQ in the following three cases:
1. Under the translation by a vector B
2. Under rotation about a point C by 180 degrees
3. Under rotation about a point C by 90 degrees
Please provide those formulae and a justification for them.

Homework Equations


X=tP+sQ
s+t=1

The Attempt at a Solution


A translation by a vector, B will preserve length and slope, so the new formulae is X=tP+sQ+B.

A rotation will preserve length, but not necessarily slope. I know that with points, a 90 degree rotation will give (x,y) -> (y,-x) and that a rotation of 180 degrees will give (x,y) -> (-x,y).

I'm not sure how to use this information to get to a clear answer, with a formula and justification for it.
 
Physics news on Phys.org
KitKat21 said:

Homework Statement


A group of American physicist works on a project where planar lines are in the form X=tP+sQ, where P and Q are two fixed different points and s, t are varying reals satisfying s+t=1. They need to know formulae for the images of the line X=tP+sQ in the following three cases:
1. Under the translation by a vector B
2. Under rotation about a point C by 180 degrees
3. Under rotation about a point C by 90 degrees
Please provide those formulae and a justification for them.


Homework Equations


X=tP+sQ
s+t=1


The Attempt at a Solution


A translation by a vector, B will preserve length and slope, so the new formulae is X=tP+sQ+B.

A rotation will preserve length, but not necessarily slope. I know that with points, a 90 degree rotation will give (x,y) -> (y,-x) and that a rotation of 180 degrees will give (x,y) -> (-x,y).

I'm not sure how to use this information to get to a clear answer, with a formula and justification for it.

There are standard formulas for the transition from ##(x,y)## to ##(x',y')## under a rotation through angle ##\theta##. Just use them on each of the points P and Q.
 
Ray Vickson said:
There are standard formulas for the transition from ##(x,y)## to ##(x',y')## under a rotation through angle ##\theta##. Just use them on each of the points P and Q.

Where would I find these formulas? I have tried google and come up with nothing...?
 
For a rotation at C, translate C to the origin, rotate, translate the origin to C.
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top