Find Values of "a" for No Critical Number | Function "f" Homework

  • Thread starter Thread starter ARYT
  • Start date Start date
ARYT
Messages
22
Reaction score
0

Homework Statement



Determine the values of the number "a" for which the function "f" has no critical number.

Homework Equations


If I'm not mistaken, this should be the result for differentiation:

The Attempt at a Solution



Critical points are either where function derivation is not defined (does not exists), OR where the derivation is equal to zero.
This is my answer; although, it seems to be a very complicated and somehow incorrect:"a" should not be these values, so "f" will not have any critical number.
 
Last edited by a moderator:
Physics news on Phys.org
No, a is a constant not function of x!

As you say, a "critical point" is one where f'(x)= -2(a^2+a- 6)sin(2x)+ a- 2 does not exist or is 0. That exists for all a and is 0 when
-2(a^2+ a- 6)sin(2x)+ a- 2= 0[/itex]<br /> so<br /> sin(2x)= \frac{a-2}{-2(a^2+ + a- 2)}[/itex]&lt;br /&gt; That never happens if &lt;br /&gt; \frac{a-2}{-2(a^2+ a- 2)}&amp;amp;gt; 1[/itex]
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top