MHB Find Vector Perpendicular to Plane

AI Thread Summary
To find a vector perpendicular to the plane defined by points P (1, 2, 3), Q (2, 3, 1), and R (3, 1, 2), the vector product of vectors PQ and PR is used. The vectors are calculated as PQ = (1, 1, -2) and PR = (2, -1, -1). The cross product PQ × PR is computed using the determinant of a matrix formed by these vectors. This method effectively yields a vector that is orthogonal to the plane formed by the three points. Understanding the vector product is essential for solving this problem.
brinlin
Messages
12
Reaction score
0
Find a vector that is perpendicular to the plane passing through the points P (1, 2, 3), Q (2, 3, 1), and R (3, 1, 2).
 
Mathematics news on Phys.org
vector product yields a vector perpendicular to two vectors ...

$\vec{PQ} \times \vec{PR}$
 
I'm sorry I don't really understand.
 
brinlin said:
I'm sorry I don't really understand.

you don't understand, or you don't know what a vector product is and how to calculate it?

$\vec{PQ} = (1,1,-2)$
$\vec{PR} = (2,-1,-1)$

$ \vec{PQ} \times \vec{PR} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1& 1 & -2 \\ 2 &-1 &-1 \\ \end{vmatrix} $
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top