merced
- 44
- 1
Find the volume of the solid obtained by rotating the region bounded by the given curves about the specified line. Sketch the region, the solid, and a typical disk or washer.
y = x
y = \sqrt{x}[\tex]<br /> rotate about y = 1<br /> <br /> <a href="http://imageshack.us" target="_blank" class="link link--external" rel="nofollow ugc noopener">http://img461.imageshack.us/img461/5879/math10sp.jpg </a><br /> <br /> =<a href="http://img161.imageshack.us/my.php?image=math23gk.jpg" target="_blank" class="link link--external" rel="nofollow ugc noopener">http://img161.imageshack.us/img161/5729/math23gk.th.jpg </a><br /> <br /> So, I am integrating with respect to x.<br /> Area = \int^1_{0}\pi[(f(x))^2-(g(x))^2]dx[\tex]<br /> <br /> I assumed that f(x) = x and g(x) = \sqrt{x}[\tex].&lt;br /&gt; &lt;br /&gt; However, the book gives f(x) = 1 - x and g(x) = 1 - \sqrt{x}[\tex].&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; I don&amp;amp;#039;t understand how they got that.
y = x
y = \sqrt{x}[\tex]<br /> rotate about y = 1<br /> <br /> <a href="http://imageshack.us" target="_blank" class="link link--external" rel="nofollow ugc noopener">http://img461.imageshack.us/img461/5879/math10sp.jpg </a><br /> <br /> =<a href="http://img161.imageshack.us/my.php?image=math23gk.jpg" target="_blank" class="link link--external" rel="nofollow ugc noopener">http://img161.imageshack.us/img161/5729/math23gk.th.jpg </a><br /> <br /> So, I am integrating with respect to x.<br /> Area = \int^1_{0}\pi[(f(x))^2-(g(x))^2]dx[\tex]<br /> <br /> I assumed that f(x) = x and g(x) = \sqrt{x}[\tex].&lt;br /&gt; &lt;br /&gt; However, the book gives f(x) = 1 - x and g(x) = 1 - \sqrt{x}[\tex].&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; I don&amp;amp;#039;t understand how they got that.
Last edited by a moderator: