Finding an expression for linear acceleration of a hanging mass

AI Thread Summary
The discussion focuses on deriving the linear acceleration of a hanging block connected to a rotating cylinder. The block's mass is four times that of the cylinder, and the equations of motion involve tension and torque. Initial calculations led to two different expressions for acceleration, a = g(1+(2M_B/M)) and a = g/(1+(M/2M_B)), but further analysis revealed that the correct acceleration is a = 2g. The participants emphasize the importance of careful algebraic manipulation in solving the problem. Ultimately, the correct expression for linear acceleration was confirmed as a = 2g.
GMc86
Messages
3
Reaction score
0
A rope of negligible mass is wrapped around a uniform solid cylinder, of radius R, that can rotate freely about its axis, which is horizontal and fixed. A block hangs vertically from the rope and causes the cylinder to spin. The blocks mass, M_B is 4 times the mass, M, of the cylinder. Find an expression for the magnitude of the linear acceleration of the hanging block in terms of R and/or g. (Rotational inertia of a cylinder is I=1/2*MR^2)

I know the motion of the block is Fnet=M_B*a or M_B*g - T (tension) = M_B*a
(btw I'm taking up to be negative y direction and down positive y direction)

I also know that Torque= I * alpha. and also Torque = R T(tension)sin(theta) where theta =1

so TR = 1/2*MR^2*alpha (from Torque=I*alpha)

solving for T i have T=1/2*M*R*alpha

Now if i plug this equation for Tension into F_net = M_B*a i get:

M_B*g - 1/2*M*R*alpha = M_B*a **(also i know that alpha = a/r)

solving for a; i found two answers. by computing the algebra differently for the two answers and I am not sure which is correct...if either of them even are correct.

a = g(1+(2M_B/M)) AND a = g/(1+(M/2M_B))

Any insight is appreciated! thanks!
 
Physics news on Phys.org
After you substitute \alpha=a/R, you have:

gM_B - \frac{1}{2}Ma = M_B a

How do you get two different solutions for a from that?

Also note, M_B=4M
 
Im not sure what i was doing before...but after recalculating using your imput, i got

a=2g

is this what you calculated as well?
 
Rules for homework mean I can give pointers on working but not on answers.
Ergo - don't be afraid to post your working and reasoning: show me how you got that.

(It looks like you need to work on your algebra.)
 
its not homework, its just a practice problem. and i don't have my work with me at the moment but i figured it out. my algebra was off. thanks for your imput!
 
Of course I'm also too lazy ;) I once wrote in an exam: "the proof of this expression is left as an exercise for the examiner."
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top