yungman
- 5,741
- 294
The standard method of calculating area of ellipse:
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1
Area = \int_C -ydx \hbox { or } \int_C xdy
It is more convient to use polar coordinate x=a cos \theta \; \hbox { and }\; y=b sin \theta
dy = b cos \theta
\hbox{ Using } \int_C xdy = \int_0^{2\pi} ab \; cos^2 \theta =\pi ab
I am trying to solve in rectangular coordiantes where:
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \Rightarrow \; y \;=\; ^+_- b\sqrt{1-\frac{x^2}{a^2} }
Using \int_C -ydx
\int_C -ydx = ^-_+ \int_{-a}^a b\sqrt{1-\frac{x^2}{a^2} } dx
\hbox{ Let } \; sin \theta = \frac{x}{a} \Rightarrow dx = a cos \theta \hbox{ and } t= -\frac{\pi}{2} \hbox { to } \frac{\pi}{2}
\int_C -ydx = ^-_+\int_{-a}^a b\sqrt{1-\frac{x^2}{a^2} } dx = ^-_+ab \int_{ -\frac{\pi}{2} }^{ \frac{\pi}{2}} cos^2 \theta d \theta = ^-_+\frac{ab}{2}\int_{ -\frac{\pi}{2} }^{ \frac{\pi}{2}} [1+cos (2\theta)] d \theta = ^-_+ \frac{\pi ab}{2}
Notice the answer is half of using polar coordinate which show the correct answer. I understand there is + and - on the square root which I don't know how to incorporate in. How do I mathametically incorporate into the equation and get the correct answer?
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1
Area = \int_C -ydx \hbox { or } \int_C xdy
It is more convient to use polar coordinate x=a cos \theta \; \hbox { and }\; y=b sin \theta
dy = b cos \theta
\hbox{ Using } \int_C xdy = \int_0^{2\pi} ab \; cos^2 \theta =\pi ab
I am trying to solve in rectangular coordiantes where:
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \Rightarrow \; y \;=\; ^+_- b\sqrt{1-\frac{x^2}{a^2} }
Using \int_C -ydx
\int_C -ydx = ^-_+ \int_{-a}^a b\sqrt{1-\frac{x^2}{a^2} } dx
\hbox{ Let } \; sin \theta = \frac{x}{a} \Rightarrow dx = a cos \theta \hbox{ and } t= -\frac{\pi}{2} \hbox { to } \frac{\pi}{2}
\int_C -ydx = ^-_+\int_{-a}^a b\sqrt{1-\frac{x^2}{a^2} } dx = ^-_+ab \int_{ -\frac{\pi}{2} }^{ \frac{\pi}{2}} cos^2 \theta d \theta = ^-_+\frac{ab}{2}\int_{ -\frac{\pi}{2} }^{ \frac{\pi}{2}} [1+cos (2\theta)] d \theta = ^-_+ \frac{\pi ab}{2}
Notice the answer is half of using polar coordinate which show the correct answer. I understand there is + and - on the square root which I don't know how to incorporate in. How do I mathametically incorporate into the equation and get the correct answer?