Finding coordinates of the centroid

SUchica10
Messages
14
Reaction score
0
Sketch the region bounded by the curves and visually estimate the location of the centroid. Then find the exact coordinates of the centroid.

y=1/x, y=0, x=1, x=2
 
Physics news on Phys.org
(show more work)

what's your definition of the centroid?
 
I am thinking it is the center of mass.
 
As robphy said, start with a definition.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top