VinnyCee
- 486
- 0
Homework Statement
For the circuit below, find H(s) = \frac{I_0(s)}{I_S(s)}
http://img108.imageshack.us/img108/7136/problem146td5.jpg
Homework Equations
Inductor in the s-domain: j\omega(Inductor Value)
The Attempt at a Solution
I made a new circuit diagram for the s-domain:
http://img293.imageshack.us/img293/7284/problem146part2gg0.jpg
i_1\,=\,\frac{V_1}{1\Omega} i_2\,=\,\frac{V_1\,-\,V_2}{j\omega} i_3\,=\,\frac{V_2}{j\omega} I_0(\omega)\,=\,\frac{V_2}{1\Omega}KCL @ V_1:
I_S(\omega)\,=\,i_1\,+\,i_2
I_S(\omega)\,=\,V_1\,+\,\frac{V_1\,-\,V_2}{j\omega}KCL @ V_2:
i_2\,=\,i_3\,+\,I_0(\omega)
\frac{V_1\,-\,V_2}{j\omega}\,=\,\frac{V_2}{j\omega}\,+\,V_2
After a couple of algebra moves(is it safe to multiply both sides by jw?), I get for V_1:
V_1\,=\,V_2\left(2\,+\,j\omega\right)
Substituting into the V_1 KCL equation:
I_S(\omega)\,=\,V_2\left(2\,+\,j\omega\right)\,+\,\frac{V_2\left(1\,+\,j\omega\right)}{j\omega}
I also have this:
I_S(\omega)\,=\,i_1\,+\,i_3\,+\,I_0(\omega)
\frac{I_0(\omega)}{I_S(\omega)}\,=\,1\,-\,\frac{i_1}{I_S(\omega)}\,-\,\frac{i_3}{I_S(\omega)}
But how do I get rid of the i1 and i3? That would require ridding the equations of the V1 and V2 right? How to do that? I bet there is a much easier way of going about this. Does anyone know of an easier way?
Last edited by a moderator: