Finding heat transfer coefficient experimentally

AI Thread Summary
The project involves constructing a cubic box to experimentally determine the heat transfer coefficient by analyzing how various objects affect it. The equation Q=h*A*delta-T will be used, with Q representing the heat transfer rate. Thermocouples will measure temperatures on the box's surfaces, treating the space between as a single resistance. The heat transfer rate Q will be calculated by plotting temperature differences over time and taking the derivative. The setup will be placed in an enclosed environmental chamber to ensure controlled conditions.
DinoRF
Messages
3
Reaction score
0
I'm working on a project where I have to construct a cubic box, then find the heat transfer coefficient through the box. I will be placing various object in the box to run tests on how they change the eat transfer coefficient. If I want to use the equation: Q=h*A*delta-T, how do I find Q, the heat transfer rate?

I'm thinking I will have thermocouples on the outside surface and on object on the inside of the box. I'll treat all the space in between as a single resistance, since I'm not worried about the heat transfer coefficient with respect to convection, radiation, or conduction, but rather the overall coefficient.

If I got the data for the outside temperature and the inside temperature and plotted that vs. time, would the Q just be the difference divided by the time of that difference?

Once I get Q, then solving for h should be simple.

I've also seen heat flux sensors, but those are expensive and I think and hope they are unnecessary.
 
Engineering news on Phys.org
How are you supplying heat?
 
I'm putting the entire system in an enclosed environmental chamber.

I'm just going to plot temp/time and take the derivative to find Q. I'm all set. I'm getting ready to build.
 
Hi all, I have a question. So from the derivation of the Isentropic process relationship PV^gamma = constant, there is a step dW = PdV, which can only be said for quasi-equilibrium (or reversible) processes. As such I believe PV^gamma = constant (and the family of equations) should not be applicable to just adiabatic processes? Ie, it should be applicable only for adiabatic + reversible = isentropic processes? However, I've seen couple of online notes/books, and...
Thread 'How can I find the cleanout for my building drain?'
I am a long distance truck driver, but I recently completed a plumbing program with Stratford Career Institute. In the chapter of my textbook Repairing DWV Systems, the author says that if there is a clog in the building drain, one can clear out the clog by using a snake augur or maybe some other type of tool into the cleanout for the building drain. The author said that the cleanout for the building drain is usually near the stack. I live in a duplex townhouse. Just out of curiosity, I...
I have an engine that uses a dry sump oiling system. The oil collection pan has three AN fittings to use for scavenging. Two of the fittings are approximately on the same level, the third is about 1/2 to 3/4 inch higher than the other two. The system ran for years with no problem using a three stage pump (one pressure and two scavenge stages). The two scavenge stages were connected at times to any two of the three AN fittings on the tank. Recently I tried an upgrade to a four stage pump...
Back
Top