Finding Inflection Points for y=(^3 +6x^2 +15x +19)e^-x

  • Thread starter Thread starter ryan.1015
  • Start date Start date
  • Tags Tags
    Points
ryan.1015
Messages
14
Reaction score
0

Homework Statement


find the inflection points of the curve y=(^3 +6x^2 +15x +19)e^-x correct to five decimal places


Homework Equations





The Attempt at a Solution


i know how to find the inflection points. you graph the derivative and find where the concavity shifts. but the e^-x really throws me off
 
Physics news on Phys.org
Steps:
1)take 2 derivatives
2)set result equal to zero
3)solutions are inflection points
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top