Finding Polynomials in the Kernel of the Evaluation Homomorphism θ_5

  • Thread starter Thread starter SMA_01
  • Start date Start date
SMA_01
Messages
215
Reaction score
0

Homework Statement



For the evaluation homomorphism θ_5: Q[x]→ℝ, find 6 elements in the kernel of the homomorphism.





The Attempt at a Solution



Basically, I find 6 polynomials with rational coefficients that will equal zero when evaluated at 5, am I correct on this?

So far I have 0, x-5, x^2-25. Is x^3-5x^2-25x+125 one also?

Thanks
 
Physics news on Phys.org
Yes to both.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top