(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Which of the following isnotan eigenvector for [tex]

T \left(

\left[ {\begin{array}{cc}

x \\

y \\

\end{array} } \right] \right) =

\left[ {\begin{array}{cc}

x + y \\

x+ y \\

\end{array} } \right]

[/tex] ?

A) v = [-2 -2]^{T}

B) v = [1 -1]^{T}

C) v = [1 2]^{T}

D) All are eigenvectors

2. Relevant equations

Ax = [tex]\lambda[/tex]x

3. The attempt at a solution

My problem is that all eigenvectors I've computed have come from 2x2 matrices. My best guess on starting is

[tex]

T \left(

\left[ {\begin{array}{cc}

-2 \\

-2 \\

\end{array} } \right] \right) =

\left[ {\begin{array}{cc}

-4 \\

-4 \\

\end{array} } \right]

\left[ {\begin{array}{cc}

-2 \\

-2 \\

\end{array} } \right]

=

[/tex]

but this obviously doesn't work because of the size. How do I find an eigenvalue of a 2x1 matrix? Is it possible? Am I even looking at this correctly?

Edit: I think I've figured it out. First, I constructed the standard matrix for T and got [tex]\left[ {\begin{array}{cc}

1&1 \\

1&1 \\

\end{array} } \right] [/tex]

Then I used Ax = [tex]\lambda[/tex]x with the vectors given to find the eigenvalues. Letter C didn't have an eigenvalue, so that is the answer.

[tex]

T \left(

\left[ {\begin{array}{cc}

-2 \\

-2 \\

\end{array} } \right] \right) =

\left[ {\begin{array}{cc}

1&1 \\

1&1 \\

\end{array} } \right]

\left[ {\begin{array}{cc}

-2 \\

-2 \\

\end{array} } \right] =

\left[ {\begin{array}{cc}

-4 \\

-4 \\

\end{array} } \right] = 2

\left[ {\begin{array}{cc}

-2 \\

-2 \\

\end{array} } \right]

[/tex]

[tex]

T \left(

\left[ {\begin{array}{cc}

1 \\

-1 \\

\end{array} } \right] \right) =

\left[ {\begin{array}{cc}

1&1 \\

1&1 \\

\end{array} } \right]

\left[ {\begin{array}{cc}

1 \\

-1 \\

\end{array} } \right] =

\left[ {\begin{array}{cc}

0 \\

0 \\

\end{array} } \right] = 0

\left[ {\begin{array}{cc}

1 \\

-1 \\

\end{array} } \right]

[/tex]

[tex]

T \left(

\left[ {\begin{array}{cc}

1 \\

2 \\

\end{array} } \right] \right) =

\left[ {\begin{array}{cc}

1&1 \\

1&1 \\

\end{array} } \right]

\left[ {\begin{array}{cc}

1 \\

2 \\

\end{array} } \right] =

\left[ {\begin{array}{cc}

3 \\

3 \\

\end{array} } \right] = ???

[/tex]

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Finding the eigenvectors for T()

**Physics Forums | Science Articles, Homework Help, Discussion**