How determine that a matrix is a tensor?

  • Thread starter GingFritz
  • Start date
  • #1
GingFritz
3
0
Homework Statement:
Hi! I need help with my homework.
I need to prove that the matrix below is a tensor.
Relevant Equations:
## T'_{ij} = T_{rs}\frac{\partial x^r}{\partial x'^{i}}\frac{\partial x^s}{\partial x'^{j}} ##
I have the matrix

$$
A = \left(\begin{array}{cc}

y^2 & -xy\\

-xy & x^2

\end{array} \right)

$$

I know that to prove that the matrix is a tensor, it transform their elements in another base. But I still without how begin this problem.

Help please! Thanks.
 

Answers and Replies

  • #2
ergospherical
891
1,222
You must specify the particular group under whose action this matrix transforms tensorially (not least to evaluate the Jacobian entries).

I guess it’s rotations within the plane. What’s the corresponding coordinate transformation?
 
  • Like
Likes Steve4Physics and GingFritz
  • #3
vanhees71
Science Advisor
Insights Author
Gold Member
2022 Award
22,472
13,406
I guess the notation is that ##x^1=x## and ##x^2=y##. Then you can build ##^{\dagger}x_k=\epsilon_{kl} x^l## with the Levi-Civita symbol ##\epsilon_{kl}##. Then investigate ##^{\dagger} x_k ^{\dagger}x_l## concerning the question, for which transformations it behaves like the covariant components of a tensor.
 
  • Like
Likes Orodruin and GingFritz
  • #4
wrobel
Science Advisor
Insights Author
997
862
I find this problem strange. A matrix may be a tensor or may not be a tensor. It depends on a genesis of the matrix. For example if ##f(x)## is a function then a matrix $$\frac{\partial^2 f}{\partial x^i\partial x^j}$$ is not a tensor. But a matrix
$$\frac{\partial f}{\partial x^i}\frac{\partial f}{\partial x^j}$$ is a tensor.
If you are given with a matrix in only one coordinate frame and that is all then you can not know whether it is a tensor or not.


Moreover there are 3 different types of tensors that a matrix can present
$$(0,2),\quad (2,0),\quad (1,1)$$
 
  • #5
vanhees71
Science Advisor
Insights Author
Gold Member
2022 Award
22,472
13,406
If ##f## is a scalar field, then ##\partial_i \partial_j f## are covariant components of a 2nd-rank tensor field under arbitrary basis transformations:
$$\partial_i' \partial_j' f=\frac{\partial x^k}{\partial x^{\prime i}} \frac{\partial x^l}{\partial x^{\prime j}} \partial_k \partial_l f,$$
and this is as covariant 2nd-rank tensor components transform.

It's of course not providing tensor components under general transformations (diffeomorphisms) of a differentiable manifold. For this you need a connection defining a covariant derivative. That's why it's important to tell the context you look at, as already stated in #2.
 
  • #6
wrobel
Science Advisor
Insights Author
997
862
If ##f## is a scalar field, then ##\partial_i \partial_j f## are covariant components of a 2nd-rank tensor field under arbitrary basis transformations:
$$\partial_i' \partial_j' f=\frac{\partial x^k}{\partial x^{\prime i}} \frac{\partial x^l}{\partial x^{\prime j}} \partial_k \partial_l f.$$
nope. Do not confuse a partial derivative ##\frac{\partial^2 f}{\partial x^i\partial x^j}## with a covariant derivative ##\nabla_i\nabla_j f##. In the last case you need to have a connection
 
  • #7
vanhees71
Science Advisor
Insights Author
Gold Member
2022 Award
22,472
13,406
As I wrote, it depends on the context. If you are on an affine space and you consider only basis transformations, the partial derivatives give tensor components. If you refer to a differentiable manifold and look at general diffeomorphisms you need a connection defining a covariant derivative.
 
  • #8
wrobel
Science Advisor
Insights Author
997
862
If you are on an affine space and you consider only basis transformations, the partial derivatives give tensor components. If you refer to a differentiable manifold
an affine space is a differentiable manifold as well:) I have a habit to consider general case until anything else has not been specified explicitly
 
  • Like
Likes GingFritz and vanhees71
  • #9
WWGD
Science Advisor
Gold Member
6,336
8,392
nope. Do not confuse a partial derivative ##\frac{\partial^2 f}{\partial x^i\partial x^j}## with a covariant derivative ##\nabla_i\nabla_j f##. In the last case you need to have a connection
Sorry to nitpick, but aren't you assuming the use of a trivial connection( identity) when using " standard" partial derivatives?
 
  • #10
Steve4Physics
Homework Helper
Gold Member
2022 Award
1,658
1,524
Hi @GingFritz.

The rules here require you to show some attempt before we offer guidance, so I’m bending the rules a bit.

As already noted by @ergospherical in Post #2, assume that the intended problem is to show that matrix A behaves as a tensor under rotation in the xy (Cartesian) plane about the origin.

If this is written work to be handed-in, state the assumption.

You didn’t answer the question in Post #2!

Find the following (just elementary trig’ and calculus):
##x’## = some expression with ##x, y## and ## θ##
##\frac{\partial x’}{\partial x}## and ##\frac{\partial x’}{\partial y}##

Repeat for ##y’##.

You might prefer to use indexed (contravariant preferred) notation (##x^1, x^2, x’^1## and ##x’^2##) rather than ##x, y, x’## and ##y’##. But I've used the notation in the question for the moment.

Show us your work and maybe we can guide you from there.
 
  • #11
GingFritz
3
0
Hi @GingFritz.

The rules here require you to show some attempt before we offer guidance, so I’m bending the rules a bit.

As already noted by @ergospherical in Post #2, assume that the intended problem is to show that matrix A behaves as a tensor under rotation in the xy (Cartesian) plane about the origin.

If this is written work to be handed-in, state the assumption.

You didn’t answer the question in Post #2!

Find the following (just elementary trig’ and calculus):
##x’## = some expression with ##x, y## and ## θ##
##\frac{\partial x’}{\partial x}## and ##\frac{\partial x’}{\partial y}##

Repeat for ##y’##.

You might prefer to use indexed (contravariant preferred) notation (##x^1, x^2, x’^1## and ##x’^2##) rather than ##x, y, x’## and ##y’##. But I've used the notation in the question for the moment.

Show us your work and maybe we can guide you from there.
I think the same. I will perform a solution with a rotation through the z axis and share it here. Thanks!
 
  • #12
wrobel
Science Advisor
Insights Author
997
862
Sorry to nitpick, but aren't you assuming the use of a trivial connection( identity) when using " standard" partial derivatives?
Actually not.
There is no a connection such that the equality
$$\nabla_i\nabla_j f=\frac{\partial^2 f(x)}{\partial x^i\partial x^j}$$
holds in each coordinate frame
 
Last edited:
  • #13
WWGD
Science Advisor
Gold Member
6,336
8,392
Actually not.
There is no a connection such that the equality
$$\nabla_i\nabla_j f=\frac{\partial^2 f(x)}{\partial x^i\partial x^j}$$
holds in each coordinate frame
Aren't we working in Euclidean space with Cartesian coordinates? In that case, Christopher symbols are trivial. But I guess I'm missing something.
 
  • #14
wrobel
Science Advisor
Insights Author
997
862
Aren't we working in Euclidean space with Cartesian coordinates? In that case, Christopher symbols are trivial.
We can calculate ##\partial^2f/(\partial x^i\partial x^j)## in any coordinate frame. If your idea is to declare any coordinate frame to be a Cartesian frame with trivial Christoffel symbols then you define not a connection but an infinite set of connections: each coordinate frame has its own connection.
That is why ##\partial^2f/(\partial x^i\partial x^j)## is not a tensor
 
Last edited:
  • #15
martinbn
Science Advisor
3,109
1,475
...
But I still without how begin this problem.
...
Best if you write the problem exactly as given with all the details, without omitting what you thought was not important.
 
  • #16
vanhees71
Science Advisor
Insights Author
Gold Member
2022 Award
22,472
13,406
We can calculate ##\partial^2f/(\partial x^i\partial x^j)## in any coordinate frame. If your idea is to declare any coordinate frame to be a Cartesian frame with trivial Christoffel symbols then you define not a connection but an infinite set of connections: each coordinate frame has its own connection.
That is why ##\partial^2f/(\partial x^i\partial x^j)## is not a tensor
No that's for sure not the intention. The point is that the problem was not stated correctly, and we shouldn't have made any attempt to answer, because there is no correct answer to an ill-posed problem.
 
  • #17
GingFritz
3
0
Best if you write the problem exactly as given with all the details, without omitting what you thought was not important.
I wrote the problem exactly as in the worksheet given.
 
  • #18
Orodruin
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Gold Member
20,004
10,651
I wrote the problem exactly as in the worksheet given.
It remains that the problem, as stated without context, is ill-defined. It may have a single interpretation within the limitations and confines of your course, but as should be painfully clear from the discussion here, the general case is more involved. In order to appropriately answer your question, we need to know what definition your course uses for a tensor (hoping against hope that it is not the all too common ”a tensor transforms as a tensor”) as well as what type of spaces you are considering (ie, Euclidean space with Cartesian coordinates, general coordinates, or differentiable manifolds).
 
  • Like
Likes vanhees71 and WWGD
  • #19
Orodruin
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Gold Member
20,004
10,651
To add to that, my interpretation assuming a restriction to Cartesian coordinates on the Euclidean plane would be ”to show that the object with components given by ##(f_{ij}(x,y)) = \ldots## in any Cartesian coordinate system ##(x,y)## transforms as the components of a rank 2 tensor under rotations”. I suspect this is the actual question but we cannot be sure without confirmation from OP. Post #3 by @vanhees71 covers this case adequately.
 
Last edited:
  • #20
jbergman
183
79
I wrote the problem exactly as in the worksheet given.
What textbook are you using?
 

Suggested for: How determine that a matrix is a tensor?

Replies
5
Views
917
Replies
5
Views
1K
  • Last Post
Replies
28
Views
755
  • Last Post
Replies
5
Views
510
Replies
1
Views
542
Replies
2
Views
387
Replies
10
Views
1K
Replies
1
Views
515
Top