Wavefunction
- 99
- 4
Homework Statement
The first block with mass m_1 slides without friction on a wedge which has an incline of angle \alpha. The wedged shaped block has a mass m_2. The second block is also allowed to slide on a flat frictionless line. Find Lagrange's equations of motion.
Homework Equations
L = T-U
\frac{∂L}{∂q_j}-\frac{d}{dt}\frac{∂L}{∂\dot{q_j}}=0
The Attempt at a Solution
First I'll define a vector \vec{R} that points to the center of mass of the system. Also \vec{r_1} is the vector that points to m_1 and \vec{r_2} is the vector that points to m_2. Additionally \vec{R}=\frac{1}{M}[m_1\vec{r_1}+m_2\vec{r_2}]. Finally let \vec{r} = \vec{r_2}-\vec{r_1}.
If I combine these equations I'll get \vec{r_1} = \vec{R}+\frac{m_2}{M}\vec{r} and \vec{r_2} = \vec{R}-\frac{m_1}{M}\vec{r}
Also \dot{\vec{r_1}} = \dot{\vec{R}}+\frac{m_2}{M}\dot{\vec{r}} and \dot{\vec{r_2}} = \dot{\vec{R}}-\frac{m_1}{M}\dot{\vec{r}}
Now I need the total kinetic energy of the system: T
T = \frac{M}{2}(\dot{\vec{r_1}}+\dot{\vec{r_2}})^2 Now I'll check this expression for accuracy when \dot{\vec{r_2}} = \vec{0}. When the second block is stationary that implies that \dot{\vec{R}} = \frac{m_1}{M}\dot{\vec{r}} Which if I substitute back into T = \frac{M}{2}(\dot{\vec{r_1}})^2 gives \frac{M}{2}(\frac{m_1+m_2}{M}\dot{\vec{r}})^2 The kinetic energy of the second block will be zero since it is at rest so setting m_2=0 gives \frac{m_1}{2}(\dot{\vec{r}})^2 So in the limit that the velocity of the second block goes to zero I get back to the familiar T of just one particle.
Now \dot{\vec{R}} = (\dot{X},\dot{Y}) and \dot{\vec{r}} = (\dot{x},\dot{y})
T = \frac{M}{2}(2\dot{\vec{R}}+\frac{m_2-m_1}{M}\dot{\vec{r}})^2
T=\frac{M}{2}[4\dot{\vec{R}}\cdot\dot{\vec{R}}+(\frac{m_2-m_1}{M})^2\dot{\vec{r}}\cdot\dot{\vec{r}}+4\frac{m_2-m_1}{M}\dot{\vec{R}}\cdot\dot{\vec{r}}]
T = \frac{M}{2}[4(\dot{X}^2+\dot{Y}^2)+(\frac{m_2-m_1}{M})^2(\dot{x}^2+\dot{y}^2)+4\frac{m_2-m_1}{M}(\dot{X}\dot{x}+\dot{Y}\dot{y})]
Okay that's T Now I need U
U = M(\vec{g}\cdot\vec{r_1}+\vec{g}\cdot\vec{r_2})
where \vec{g} = (0,-g), \vec{r_1} = (X+\frac{m_2}{M}x,Y+\frac{m_2}{M}y), and \vec{r_2} = (X-\frac{m_1}{M}x,Y-\frac{m_1}{M}y)
Okay so now I need to apply my constraints which are now: \frac{Y}{X}=tan(\alpha) and \frac{y}{x}=tan(\alpha) so plugging into both T and U
T=\frac{M}{2}[4(1+tan^2(\alpha))\dot{X}^2+(\frac{m_2-m_1}{M})^2(1+tan^2(\alpha))\dot{x}^2+4\frac{m_2-m_1}{M}(1+tan^2(\alpha))\dot{X}\dot{x}]
T =\frac{Msec^2(\alpha)}{2}[4\dot{X}^2+(\frac{m_2-m_1}{M})^2\dot{x}^2+4\frac{m_2-m_1}{M}\dot{X}\dot{x}]
and
U = M(\vec{g}\cdot(\vec{r_1}+\vec{r_2})) = M[-2gtan(\alpha)X-g\frac{m_2-m_1}{M}tan(\alpha)x]
U = Mgtan(\alpha)[-2X-\frac{m_2-m_1}{M}x]
Then L= T-U and H = T+U
L = T -U = \frac{Msec^2(\alpha)}{2}[4\dot{X}^2+(\frac{m_2-m_1}{M})^2\dot{x}^2+4\frac{m_2-m_1}{M}\dot{X}\dot{x}]-Mgtan(\alpha)[-2X-\frac{m_2-m_1}{M}x]
Now the momenta are: p_X = \frac{∂L}{∂\dot{X}} = \frac{Msec^2(\alpha)}{2}[8\dot{X}+4\frac{m_2-m_1}{M}\dot{x}] and p_x =\frac{∂L}{∂\dot{x}}= Msec^2(\alpha)[(\frac{m_2-m_1}{M})^2\dot{x}+2\frac{m_2-m_1}{M}\dot{X}]
Also: \frac{∂L}{∂X} = 2Mgtan(\alpha) and \frac{∂L}{∂x} = (m_2-m_1)gtan(\alpha)
Then the Lagrange equations are:
x: (m_2-m_1)gtan(\alpha)-Msec^2(\alpha)[(\frac{m_2-m_1}{M})^2\ddot{x}+2\frac{m_2-m_1}{M}\ddot{X}]=0
X: 2Mgtan(\alpha)-Msec^2(\alpha)[4\ddot{X}+2\frac{m_2-m_1}{M}\ddot{x}]=0