Finding the maximum value of current

AI Thread Summary
The discussion revolves around calculating the maximum current measurable by a galvanometer with specific parameters, including a sensitivity of 0.1 mA per division and a resistance of 40Ω. The user initially miscalculated the current through the galvanometer, arriving at an incorrect value of 1247 A instead of the correct maximum of 2 A. The confusion stemmed from misunderstanding the relationship between the galvanometer's full-scale current and the shunt resistance. After clarifying the calculations involving the total current and the voltage across the galvanometer, the user successfully grasped the concept and arrived at the correct solution. This highlights the importance of accurately applying circuit principles when working with sensitive measuring devices.
Muthumanimaran
Messages
79
Reaction score
2

Homework Statement


galvanometer with 50 divisions on the scale requires a current sensitivity of 0.1 m A/division. The resistance of the galvanometer is 40Ω. If a shunt resistance 0.1 Ω is connected across it, find the maximum value of the current that can be measured using this ammeter.

Homework Equations


current sensitivity = $\frac{\theta}{I}$
where $\theta$ is the division and $I$ is the current

$\frac{I_{g}}{I-{I_{g}}}G=S$
$I_{g}$ is the current through the galvanometer. $I$ is the total current. $G$ is galvanometer resistance and $S$ is the shunt resistance.

The Attempt at a Solution



using the first expression, I found the current through the circuit, i.e,
$$I=\frac{50}{0.1mA}$$
or

$$I=5\times10^{5}$$

next I substituted in the above formula, I get $I_{g}$ is equal to 1247 A. But it is not the correct answer. The correct answer is 2 A. Definitely I made a mistake, I understand the mistake is purely conceptual. I believe the maximum current that can be measured is not $I_{g}$, so help me to understand the problem.
 
Physics news on Phys.org
What is current is passing through the meter without the shunt at full scale?
 
The reason I ask is because if full scale is 50 divisions and there is .1ma (100 microamps) per division then the meter will draw 5 ma at full scale. Knowing this in conjunction with the 40 ohm series resistance of the meter means it has a voltage of 40 x 5 ma or .2 volts. Now the .1 ohm is in parallel with the 40 ohm series meter resistance. At this point the current through the .1 ohm resistance can be found and from that the maximum current that will drive the meter to full scale. Let me know if you still need help
 
  • Like
Likes Muthumanimaran
Muthumanimaran said:
current sensitivity of 0.1 m A/division.
...
current sensitivity = ##\frac{\theta}{I}## where ##\theta## is the division and ##I## is the current
Do you not see a conflict between those two statements?

In this forum, the latex requires either a double dollar sign (giving it a line to itself) or a double hash sign (#) to embed it within a line:
Muthumanimaran said:
##\frac{I_{g}}{I-{I_{g}}}G=S##
##I_{g}## is the current through the galvanometer. ##I## is the total current. ##G## is galvanometer resistance and ##S## is the shunt resistance.
 
Inventive said:
The reason I ask is because if full scale is 50 divisions and there is .1ma (100 microamps) per division then the meter will draw 5 ma at full scale. Knowing this in conjunction with the 40 ohm series resistance of the meter means it has a voltage of 40 x 5 ma or .2 volts. Now the .1 ohm is in parallel with the 40 ohm series meter resistance. At this point the current through the .1 ohm resistance can be found and from that the maximum current that will drive the meter to full scale. Let me know if you still need help
Thanks for your help. I understood the mistake and got the correct solution.
 
Your welcome
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top