MHB Finding the projection of a vector.

  • Thread starter Thread starter Jundoe
  • Start date Start date
  • Tags Tags
    Projection Vector
Jundoe
Messages
10
Reaction score
0
I would like to verify this problem from an introductory to Linear Algebra course.

It goes as follows:

Let L be the line with parametric equations x=2+3t, y=1-2t, z=-2+t, and let v=(3,2,2). Find vectors w1 and w2 such that v=w1+w2, and such that w1 is parallel to L and w2 is perpendicular to L.

This is how I proceeded:

From the given parametric equations I constructed the vectors:
line L: a=(3, -2, 1) and b=(2,1,-2).

To find w1, I know that w1= kL

And to find k: (v.L)/||L||2
And w2 is just a matter of: w2=v-w1

The issue I am facing is, which vector do I chose for the L?
I have found 2 vectors from the parametric equations.
Should I simply take the difference? a-b= (1,-3,3)?

Thank You.

[edit.]

If I stick to my L line being equal to (1,-3,3), due to the fact that b is my position vector, then:

w1 = 3/19(1,-3,3)
w2 = (3,2,2) - 3/19(1,-3,3)

Am I completely off?
 
Last edited:
Physics news on Phys.org
Jundoe said:
I would like to verify this problem from an introductory to Linear Algebra course.

It goes as follows:

Let L be the line with parametric equations x=2+3t, y=1-2t, z=-2+t, and let v=(3,2,2). Find vectors w1 and w2 such that v=w1+w2, and such that w1 is parallel to L andw2 is perpendicular to L.

This is how I proceeded:

From the given parametric equations I constructed the vectors:
line L: a=(3, -2, 1) and b=(2,1,-2).

To find w1, I know that w1= kL

And to find k: (v.L)/||L||2
And w2 is just a matter of: w2=v-w1

The issue I am facing is, which vector do I chose for the L?
I have found 2 vectors from the parametric equations.
Should I simply take the difference? a-b= (1,-3,3)?

Thank You.
Hi Jundoe, and welcome to MHB!

You have got the equation of the line L as $(x,y,z) = \mathbf{b} + \mathbf{a}t.$ In that equation, $\mathbf{b}$ (the constant) is a point on the line, and $\mathbf{a}$ (the coefficient of $t$) gives the direction of the line. So you want to take $\mathbf{a}$ as the parameter for $\mathbf{w}_1$, because you want $\mathbf{w}_1$ to point in the same direction as L.
 
Opalg said:
Hi Jundoe, and welcome to MHB!

You have got the equation of the line L as $(x,y,z) = \mathbf{b} + \mathbf{a}t.$ In that equation, $\mathbf{b}$ (the constant) is a point on the line, and $\mathbf{a}$ (the coefficient of $t$) gives the direction of the line. So you want to take $\mathbf{a}$ as the parameter for $\mathbf{w}_1$, because you want $\mathbf{w}_1$ to point in the same direction as L.

Thank you for replying! So in other words, the position of the vector–its origin–is irrelevant in this matter?

So, ignoring the point. I would have the following:

w1= 1/2(3,-2,1)
w2= (3,2,2)-1/2(3,-2,1)= (3/2, 3, 3/2)

Hope I didn't do any careless mistakes, does that seem about right?
 
Jundoe said:
Thank you for replying! So in other words, the position of the vector–its origin–is irrelevant in this matter?

So, ignoring the point. I would have the following:

w1= 1/2(3,-2,1)
w2= (3,2,2)-1/2(3,-2,1)= (3/2, 3, 3/2)

Hope I didn't do any careless mistakes, does that seem about right?
Correct! (Yes)
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
1
Views
2K
Replies
2
Views
2K
Replies
13
Views
3K
Replies
3
Views
1K
Replies
3
Views
2K
Replies
3
Views
5K
Replies
14
Views
3K
Replies
5
Views
2K
Back
Top