Finding the Solution for C - (A-B) in Discrete Mathematics

  • Thread starter Thread starter nicnicman
  • Start date Start date
nicnicman
Messages
132
Reaction score
0
Here's the problem:
Suppose U = {x | -10 ≤ x ≤ 10 and x ∈ Z}, A = all multiples of 2, B = all multiples of 3, and C = {-10, -9, -8, -6, -4, 0, 1, 3, 5, 6, 8, 10}.

Find C - (A-B).

Solution:
A = {-10, -8, -6, -4, -2, 0, 2, 4, 6, 8, 10}
B = {-9, -6, -3, 0, 3, 6, 9}
C = {-10, -9, -8, -6, -4, 0, 1, 3, 5, 6, 8, 10}

C - (A-B) = C - {-10, -8, -4, -2, 2, 4, 8, 10}
= {-10, -8, -6, -4, -2, 0, 2, 4, 6, 8, 10} - {-10, -8, -4, -2, 2, 4, 8, 10}
= {-9, -6, 0, 1, 3, 5, 6}

Does this look right? Thanks for any suggestions!
 
Physics news on Phys.org
nicnicman said:
Here's the problem:
Suppose U = {x | -10 ≤ x ≤ 10 and x ∈ Z}, A = all multiples of 2, B = all multiples of 3, and C = {-10, -9, -8, -6, -4, 0, 1, 3, 5, 6, 8, 10}.

Find C - (A-B).

Solution:
A = {-10, -8, -6, -4, -2, 0, 2, 4, 6, 8, 10}
B = {-9, -6, -3, 0, 3, 6, 9}
C = {-10, -9, -8, -6, -4, 0, 1, 3, 5, 6, 8, 10}

C - (A-B) = C - {-10, -8, -4, -2, 2, 4, 8, 10}
= {-10, -8, -6, -4, -2, 0, 2, 4, 6, 8, 10} - {-10, -8, -4, -2, 2, 4, 8, 10}
= {-9, -6, 0, 1, 3, 5, 6}

Does this look right? Thanks for any suggestions!
Looks right to me.
 
Okay, thanks for the help!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top