How Do You Calculate a Perpendicular Unit Vector in Multivariable Functions?

Calpalned
Messages
297
Reaction score
6

Homework Statement


Suppose ##F(x, y, z, u, v) = xy^2 + yz^2 + zu^2 + uv^2 + vx^2 ## Standing at the point ##(1, 1, 1, 1, 1) ## imagine moving in a direction ##\vec w ## where ##\vec w ## is a unit vector. Find the components of a vector ##\vec u ## such that ## D_\vec u F = 0 ##
Remember ##\vec w ## needs to be unit vector.

Homework Equations


Directional vector = ##\nabla F \cdotp \vec w ##

The Attempt at a Solution



Directional vector = ## <F_x, F_y, F_z, F_u, F_v> \cdotp \vec w = 0 ##
So ##\nabla F ## and ## \vec w ## are perpendicular.
If ## \vec w = <a, b,c, d, e> ## then the components of ## \vec w ## must satisfy ##aF_x + bF_y + cF_z + dF_u + eF_v = 0 ##
To sum it up ## \vec w = <a, b,c, d, e> \frac {1}{|w|} = ## unit vector

I only got 4/10 points on this question, so I made a mistake somewhere...
 
Physics news on Phys.org
Is that all of the work you did? You have everything in implicit form...
Your vector <a,b,c,d,e> could be any five numbers at this point.

You need to go more specific
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top