Finding the Volume of a Rotated Solid Using Partial Fractions

philsgirl2008
Messages
2
Reaction score
0

Homework Statement


Find the volume of the resulting solid if the region under the curve y=1/(x^2+3x+2) from x=0 to x=1 is rotated about the x-axis.
R=(1/(x^2+3x+2)
Equation for volume using the slicing method...
3.14 INT((1/(x^2+3X+2))^2)dx over the interval 0-1

Homework Equations


R=(1/(x^2+3x+2)
Equation for volume using the slicing method...
3.14 INT((1/(x^2+3X+2))^2)dx over the interval 0-1

The Attempt at a Solution


3.14 INT((1/(x+1)^2(x+2)^2))
A/(x+1) + B/(x+2)^2 + C/(x+2) + D/(x+1)^2 = (1/((x+1)^2)(x+2)^2))
1= A(x+1)(x+2)^2 + B(x+2)^2 + C((x+1)^2) + D(x+1)^2
Set x= -1, B=1
Set x= -2, D=1
Where do I go from here?
 
Physics news on Phys.org
By the way - sorry this isn't very pretty, never used this site before so I wasn't sure if there was exponential / division things. so that's what it is, Thank you!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top