danago
Gold Member
- 1,118
- 4
If \vec{u},\vec{v} \in R^n, find \vec{u}.\vec{v} given that |\vec{u}+\vec{v}|=1 and that |\vec{u}-\vec{v}|=5.
When i first looked at this i thought i knew how to do it, but i got a bit stuck. I started by finding the dot product:
<br /> \begin{array}{l}<br /> (\overrightarrow u - \overrightarrow v ) \cdot (\overrightarrow u - \overrightarrow v ) = \left| {\overrightarrow u } \right|^2 + \left| {\overrightarrow v } \right|^2 - 2\overrightarrow u \cdot \overrightarrow v \\ <br /> \therefore \left| {\overrightarrow u - \overrightarrow v } \right|^2 = \left| {\overrightarrow u } \right|^2 + \left| {\overrightarrow v } \right|^2 - 2\overrightarrow u \cdot \overrightarrow v \\ <br /> \therefore \overrightarrow u \cdot \overrightarrow v = \frac{{\left| {\overrightarrow u } \right|^2 + \left| {\overrightarrow v } \right|^2 - \left| {\overrightarrow u - \overrightarrow v } \right|^2 }}{2} \\ <br /> \end{array}<br /> <br />
And that's where I am stuck. I am sure its something simple, but i haven't managed to see it
When i first looked at this i thought i knew how to do it, but i got a bit stuck. I started by finding the dot product:
<br /> \begin{array}{l}<br /> (\overrightarrow u - \overrightarrow v ) \cdot (\overrightarrow u - \overrightarrow v ) = \left| {\overrightarrow u } \right|^2 + \left| {\overrightarrow v } \right|^2 - 2\overrightarrow u \cdot \overrightarrow v \\ <br /> \therefore \left| {\overrightarrow u - \overrightarrow v } \right|^2 = \left| {\overrightarrow u } \right|^2 + \left| {\overrightarrow v } \right|^2 - 2\overrightarrow u \cdot \overrightarrow v \\ <br /> \therefore \overrightarrow u \cdot \overrightarrow v = \frac{{\left| {\overrightarrow u } \right|^2 + \left| {\overrightarrow v } \right|^2 - \left| {\overrightarrow u - \overrightarrow v } \right|^2 }}{2} \\ <br /> \end{array}<br /> <br />
And that's where I am stuck. I am sure its something simple, but i haven't managed to see it
