Finding Work Done by a Force Field: A Math Problem

zekester
Messages
30
Reaction score
0
i have a force field F = 2xy*(ux)+(x^2-z^2)(uy)-3xz^2(uz) where ux,uy,and uz are unit vectors in the direction indicated. I have to find the work done by the field on a particle that travels from A(0,0,0) to
B(2,1,3) on a straight line. work is regarded as the integral from A to B of the dot product of F and dl = dx(ux)+dy(uy)+dz(uz). I'm not quite sure how to do this.
 
Physics news on Phys.org
You can introduce a common vairable of integration to solve this.
Since
\int_{A}^{B} \vec{F}.d\vec{r} = \int_{t1}^{t2} \vec{F}.(\vec{\frac{dr}{dt}}) dt

Where \vec{r} (and F) can be expressed as a function of t.
 
Last edited:
ok, thanks
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top