Finding work, heat, and entropy in a heat engine

Click For Summary
SUMMARY

The discussion focuses on calculating various thermodynamic properties of a heat engine operating with 1.94 moles of a monatomic ideal gas. Key calculations include the absolute temperature (T) during the isothermal process, the work done (W) on the gas, the change in entropy (ΔS), total work (Wtot) for the entire cycle, and total heat exchanged (Qtot). The correct values derived include T = 372 K, W = 5214.83 J, ΔS = -14.0 J/K, Wtot = -3090.96 J, and Qtot = 3259.02 J. The user successfully recalculated the values after receiving feedback on significant figures and volume corrections.

PREREQUISITES
  • Understanding of the Ideal Gas Law (PV=nRT)
  • Knowledge of thermodynamic processes: isobaric, isochoric, and isothermal
  • Familiarity with entropy calculations (ΔS = Qrev/T)
  • Ability to perform unit conversions (e.g., L to m³, atm to Pa)
NEXT STEPS
  • Study the derivation and application of the Ideal Gas Law in thermodynamic cycles
  • Learn about the First Law of Thermodynamics and its implications for work and heat
  • Explore advanced entropy concepts and their significance in thermodynamic efficiency
  • Investigate the impact of significant figures in scientific calculations and reporting
USEFUL FOR

Students and professionals in thermodynamics, mechanical engineers, and anyone involved in the analysis of heat engines and energy systems.

rubenhero
Messages
41
Reaction score
2

Homework Statement


An engine operates with n = 1.94 moles of a monatomic ideal gas as its working substance, starting at volume VA = 21.4 L and pressure PA = 2.77 atm. The cycle consists of:

- A to B: an isobaric expansion until its volume is VB = 50.1 L
- B to C: an isochoric (constant volume) process that lowers the pressure to PC = 1.184 atm
- C to A: an isothermal (constant temperature) process that returns the gas to its original pressure and volume

HINT: Draw a P-V diagram of this process.

a) Find TT, the absolute temperature of the isothermal process.
b) Find WT, the work done on the gas during the isothermal process.
c) Find ΔST, the change in entropy of the gas during the isothermal process.
d) Find Wtot, the work done in the entire cycle.
e) Find Qtot, the heat that is exchanged (in or out) during the entire cycle.


Homework Equations


PV=nRT, Wdone on a gas = nRTln(Vo/Vf),
ΔS = Qrev/T, Qp = CpT, Cp = 5/2nR,
Qv = CvΔT, Cv = 3/2nR


The Attempt at a Solution


necessary conversions:
1 atm = 1.013e5 Pa
2.77 atm = 280601 Pa
1.184 atm = 119939.2 Pa

1L = 1/1000 m^3
21.4 L = .0214 m^3
50.1 L = .051 m^3

2 a) Find TT, the absolute temperature of the isothermal process.
PV = nRT
PV/nR = T
(280601Pa * .0214m^3)/ (1.94 moles * 8.314 J/mol-K) = T
372.2984582K = T
372 K = T [webassign marked as correct] 3 significant digits

b) Find WT, the work done on the gas during the isothermal process.

Won the gas = nRT ln(Vo/Vf)
= 1.94 moles * 8.314 J/mol-K * 372 K ln(.051m^3/.0214m^3)
= 5214.830072 J
Won the gas = 5.21e3 J [webassign marked as correct] 3 significant digits

c) Find ΔST, the change in entropy of the gas during the isothermal process.
change in IE is 0 since it is an isothermal process, work is positive because the gas was compressed and work was done on the gas
change IE = Q + W
0 = Q + 5214.830072 J
-5214.830072 J = Q
dS = dQrev/T
= -5214.830072 J/ 372.2984582 K
= -14.0071224 J/K
dS = -14.0 J/K [webassign marked as wrong] 3 significant digits

d) Find Wtot, the work done in the entire cycle.
plan : find work done in all parts of the cycle and get sum

A-B is an isobaric process so W = -PdV
= -280601 Pa * (.051m^3 - .0214m^3)
= -8365.7896 J
B-C is an isochoric process so W = 0
C-A is an isothermal process (taken from part 2b) W = 5214.830072 J

Wtot = WA-B + WB-C + WC-A = -8365.7896 J + 0J + 5214.830072 J
Wtot = -3090.959528 J
Wtot = -3.09e3 J [ webassign marked as wrong] 3 significant digits

e) Find Qtot, the heat that is exchanged (in or out) during the entire cycle.

plan : find heat in all parts of the cycle and get sum

A-B is an isobaric process so Q = CpdT
= 5/2 n R dT

we need the different temperature at points A and B to get dT:
@ A : PV/nR = T
= (280601Pa * .0214m^3)/ (1.94 moles * 8.314 J/mol-K) = T
= 372 K
@B : PV/nR = T
= (280601Pa * .051m^3)/ (1.94 moles * 8.314 J/mol-K) = T
= 887.253335 K
dT = TB - TA = 887.253335 K - 372.2984582 K = 515 K

so now QA-B = 5/2 n R dT
= 5/2 * 1.94 moles * 8.314 J/mol-K * 515 K
= 20764.474 J positive because heat was added to the system

B-C is an isochoric process so Qv = CvdT
= 3/2 n R dT
we need the different temperature at points B and C to get dT:
@B : PV/nR = T
= (280601Pa * .051m^3)/ (1.94 moles * 8.314 J/mol-K) = T
= 887.253335 K
@C : PV/nR = T
= (119939.2Pa * .051m^3) / (1.94 moles * 8.314 J/mol-K) = T
= 379.2447468 K
dT = TB - Tc = 887.253335 K - 379.2447468 K
= 508.0085882 K
= 508 K
so Q = 3/2 n R dT
= 3/2 1.94 moles * 8.314 J/mol-K * 508 K
= -12290.6277 J negative because heat was removed
C-A is an isothermal process and we already figured out Q is -5214.830072 J from part 2b

so finally Qtot = QA-B + QB-C + QC-A

= 20764.474 J + -12290.6277 J + -5214.830072 J
= 3259.016228 J
= 3.25e3 J [webassign marked as wrong] 3 significant figures

thank you in advance for any input as to why my work might be wrong.
 
Physics news on Phys.org
rubenhero said:

The Attempt at a Solution


necessary conversions:


1L = 1/1000 m^3
21.4 L = .0214 m^3
50.1 L = .051 m^3

VB=0.0501 m^3.
Recalculate the isotherm work with the correct volume. Also try to use more significant digits in T.

ehild
 
Thank you ehild, I redid all the work and got the correct answers.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
915
  • · Replies 6 ·
Replies
6
Views
698
Replies
4
Views
1K
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 23 ·
Replies
23
Views
12K