Finding |<+y|-θ>|^2 in terms of θ

NanoChrisK
Messages
14
Reaction score
0

Homework Statement


Picture 2.jpg

What is the probability that an electron emerging from the plus channel of the first device will end up in the minus channel of the second device? Express your answer in terms of θ. (Refer to the attached image)

Homework Equations


This uses the outcome probability rule that says that "In an experiment that determines the value of an observable, the probability of any given result (i.e., the probability that the quanton's state will collapse to that result's eigenvector) is the absolute square of the inner product of the quanton's original state and the result's eigenvector" (From "Six Ideas that Shaped Physics: Unit Q" by Thomas A. Moore pp. 103")

The Attempt at a Solution



upload_2014-10-11_22-35-45.png

This is saying that the result will be 50% regardless of θ. This can't be right. Graphing 1/2(sinθ/2-cosθ/2)^2 gives a probability between 0% and 100%, which I would expect, but that's not what I get when I simplify it.

I suspect I've done something wrong when I've said sin^2(1/2*θ)+cos^2(1/2*θ)=1, but if the values inside sin^2 and cos^2 are the same, why can't I just say sin^2(A)+cos^2(A)=1?

On a side note: The second part of the question asks what the quanton's spin state vector would be after leaving the second device. I believe I would use the superposition rule to find this out, but I'm not sure. But I can put that in a different thread if I can't figure it out.

UPDATE:

Ok, I think I've found the solution. I was implying that (A-B)^2=A^2+B^2, which was INCORRECT!. I guess the problem is that I need to re-take basic algebra. Here my new attempt:
upload_2014-10-12_1-3-55.png
 
Last edited:
Physics news on Phys.org
Thanks for the post! Sorry you aren't generating responses at the moment. Do you have any further information, come to any new conclusions or is it possible to reword the post?
 
Your updated solution looks correct to me, assuming you have constructed the ##\left|-\theta\right>## ket correctly (I can't recall the results well enough to know if you have a minus sign missing or something like that).
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top