For the Lagrangian of fermion masses, how do I understand?

lhcQFT
Messages
5
Reaction score
0
Hello, everyone.

I have a one question which is related to the fermion masses.
If you see my latex mathematics, you can know what I want to say.
Here, L means SU(2) left-handed lepton doublets and R means SU(2) right-handed lepton singlets.

So I am too much confusing to understand this mechanism. When I expanded lagrangian into components of lepton doublets and that of lepton singlets, I can't understand how these terms( (1x1) (2x2) (1x1) <= I expressed each term by using matrix notation ) can be gauge singlets? If you give me detailed explanation, I really thanks to you.

Have a good day.
 
Physics news on Phys.org
what latex?
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top