For values of x which a solution exists solve for y

  • Thread starter Thread starter steve snash
  • Start date Start date
steve snash
Messages
50
Reaction score
0

Homework Statement


(For those values of x for which a solution exists), solve the following equation for y
3e^(2y−8) = (2x^5)−3

Homework Equations


1. xln e= x

The Attempt at a Solution


1.3e^(2y−8) = (2x^5)−3
2.e^(2y−8) = ((2x^5)−3)/3
3.(2y-8)ln e = (ln (2x^5)-3)/3
4.(2y-8) = (ln (2x^5)-3)/3
5.y= ((ln (2x^5)-3/6)+8

this answer was wrong just wondering where i went wrong??
 
Physics news on Phys.org
e^{2y-8}=\frac{2x^{5}}{3}-1

2y-8=ln({\frac{2x^{5}}{3}-1})

2y=ln(\frac{2x^{5}}{3}-1)+8

y=\frac{ln(\frac{2x^{5}}{3}-1)}{2}+4
 
Thanks man
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top