Forced Oscillation with complex numbers

namesis
Messages
2
Reaction score
0

Homework Statement


If a force F = F_0 cos (\omega t) = \Re{\{F_0 e^{i \omega t}\}} is applied to a body of mass m attached to a spring of constant k, and x = \Re\{z\}. Show that the following equation holds:
m \ddot{z} = - k z + Fe^{i \omega t} .

Homework Equations


Newton's second law.

The Attempt at a Solution


I tried to solve the problem assuming that z = x + y i with x and y being real numbers and show that the real parts of the two sides of the equation are equal and so are the imaginary parts. However, although for the real parts we just get Newton's second law, I could not anything useful by the imaginary parts.
 
Physics news on Phys.org
Hello Namesis, :welcome:

Don't you get Newton's law for the imaginary part as well ?
 
namesis said:

Homework Statement


If a force F = F_0 cos (\omega t) = \Re{\{F_0 e^{i \omega t}\}} is applied to a body of mass m attached to a spring of constant k, and x = \Re\{z\}. Show that the following equation holds:
m \ddot{z} = - k z + Fe^{i \omega t} .

Homework Equations


Newton's second law.

The Attempt at a Solution


I tried to solve the problem assuming that z = x + y i with x and y being real numbers and show that the real parts of the two sides of the equation are equal and so are the imaginary parts. However, although for the real parts we just get Newton's second law, I could not anything useful by the imaginary parts.
The key point is that only the real part has physical meaning, you may ignore completely the imaginary part. The physical equation is the real part of ##m \ddot{z} = - k z + Fe^{i \omega t} ##, the imaginary part can simply be discarded, it has no meaning (as is clear from the fact that the y you introduced in ##z= x + i y ## has not been assigned any physical meaning.
 
nrqed said:
The key point is that only the real part has physical meaning, you may ignore completely the imaginary part. The physical equation is the real part of ##m \ddot{z} = - k z + Fe^{i \omega t} ##, the imaginary part can simply be discarded, it has no meaning (as is clear from the fact that the y you introduced in ##z= x + i y ## has not been assigned any physical meaning.

I see now. My point was that you can perfectly write x as x + 2342 i \in \mathbb{Z} without that obeying the equation. So every z that is a solution of the equation, has the property x = \Re{\{z\}} but not every z with the previous property satisfies the equation. The problem was stated in a way that it implied that what I had to show is: "Show that x = \Re{\{z\}} if and only if z satisfies the equation."
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top