jegues
- 1,085
- 3
Homework Statement
Write equations that could be used to solve for, V_{1}(s) \quad , \quad V_{2}(s) in the Laplace domain for the mechanical system shown in the figure attached.
Homework Equations
The Attempt at a Solution
I think I understand most of the problem, but I think I am confused about the direction of the forces.
I am looking to write two equations as follows,
\sum \text{Forces on M1} = 0 \quad , \quad \sum \text{Forces on M2} = 0
First,
\sum \text{Forces on M1} = 0
b_{2}(v_{1}(t) - 0) + b_{1}(v_{1}(t) - v_{2}(t)) + M_{1}\frac{dv_{1}(t)}{dt} = r(t)
Second,
\sum \text{Forces on M2} = 0
b_{1}(v_{2}(t) - v_{1}(t)) + k\int v_{2}(t) dt + M_{2}\frac{dv_{2}(t)}{dt} = 0
Here are the things I am confused about,
- For the forces on the dampers, how do I figure out whether it is (v2-v1) or (v1-v2) in each of the two cases?
- Why is the force from the spring not considered in the first equation, i.e. summation of forces on M1?
I am capable of completing the rest of the problem without any issues, but I just want to clarify my understanding with regards to those two questions.