Formal Proof of Uniform Continuity on a Closed Interval

MathSquareRoo
Messages
26
Reaction score
0

Homework Statement



Prove that if f is uniformly continuous on [a,b] and on [a,c] implies that f is uniformly continuous on [a,c].

Homework Equations




The Attempt at a Solution



This is my rough idea for a proof, can someone help be say this more formally? Is my thinking even correct?

Let epsilon > 0.
Then there is some delta_1 for [a,b] and some delta_2 for [b,c].
Then the minimum of delta_1 and delta_2 is the delta we want for [a,c].
 
Physics news on Phys.org
MathSquareRoo said:

Homework Statement



Prove that if f is uniformly continuous on [a,b] and on [a,c] implies that f is uniformly continuous on [a,c].

Homework Equations




The Attempt at a Solution



This is my rough idea for a proof, can someone help be say this more formally? Is my thinking even correct?

Let epsilon > 0.
Then there is some delta_1 for [a,b] and some delta_2 for [b,c].
Then the minimum of delta_1 and delta_2 is the delta we want for [a,c].

Sure, that's the idea. It's not that hard to fill that out to a formal proof.
 
Thanks. What changes should I make to make it more formal?
 
MathSquareRoo said:
Thanks. What changes should I make to make it more formal?

Just fill in some words. "there is some delta_1 for [a,b]" doesn't mean much. There is some delta_1 for [a,b] such that what? I know what you mean, but spell it out.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top