Fourier cosine/sine transforms

  • Thread starter Thread starter asdf1
  • Start date Start date
  • Tags Tags
    Fourier
asdf1
Messages
734
Reaction score
0
why doesn't e^x have Fourier cosine/sine transforms?
 
Physics news on Phys.org
It is too singular as x-->infty.
 
could you please explain the meaning of singular?
 
f(x) must vanish as x goes to infinity in order for the the Fourier transform of f(x) to exist
 
i see! thank you very much!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top