- 6,735
- 2,431
Homework Statement
Let f be a periodic function with period 2pi
Let:
g = e^{2it}f(t-3)
Find a relation between f and g's complex Fourier coefficents.
Homework Equations
y(t) = \sum _{n-\infty}^{\infty} b_n e^{in\Omega t}
T \Omega = 2\pi
T is period
b_n = \dfrac{1}{T}\int _0^{T} y(t)e^{-in\Omega t}dt
The Attempt at a Solution
g is also periodic with 2pi, since e^{2it} is.
f(t) = \sum _{n = -\infty}^{\infty} c_n e^{in t}
c_n = \dfrac{1}{2\pi}\int _0^{2\pi} f(t)e^{-int}dt
g(t) = \sum _{m = -\infty}^{\infty} d_m e^{im t}
d_m= \dfrac{1}{2\pi}\int _0^{2\pi}e^{2it}e^{-imt}f(t-3)dt
f(t-3) = \sum _{n = -\infty}^{\infty} \left( \dfrac{1}{2\pi}\int _0^{2\pi} f(t-3)e^{-int}dt \right) e^{int}
d_m= \dfrac{1}{2\pi}\int _0^{2\pi}e^{it(2-m)}\left( \sum _{n = -\infty}^{\infty} \left( \dfrac{1}{2\pi}\int _0^{2\pi} f(t-3)e^{-int}dt \right) e^{int} \right) dt
r = t-3
Then r = t
d_m = \dfrac{1}{2\pi}\int _0^{2\pi}e^{it(2-m)}\left( \sum _{n = -\infty}^{\infty} \left( \dfrac{1}{2\pi}\int _{-3}^{2\pi -3} f(t)e^{-in(t+3)}dt \right) e^{int} \right) dt
We are still integrating over an integer multiple of periods, so that we can write:
d_m = \dfrac{1}{2\pi}\int _0^{2\pi}e^{it(2-m)}\left( \sum _{n = -\infty}^{\infty} \left( \dfrac{1}{2\pi}\int _{0}^{2\pi} f(t)e^{-int}e^{-i3n}dt \right) e^{int} \right) dt
d_m= \dfrac{1}{2\pi}\int _0^{2\pi}e^{it(2-m)}\left( \sum _{n = -\infty}^{\infty}c_n e^{-i2n}dt \right) dt
Does this look right to you guys? I don't have an answer to this one, and we have no smiliar problems in our course book =/
Last edited: