Fourier Series Help: Find Steady State Solution of Diff Eq

Giuseppe
Messages
42
Reaction score
0
Can anyone help me out with this?

Find the steady state periodic solution of the following differential equation.

x''+10x= F(t), where F(t) is the even function of period 4 such that
F(t)=3 if 0<t<1 , F(t)=-3 if 1<t<2.


Im basically just having a problem findind the general Fourier series for F(t).
I know how to do the latter part of the problem.

My work so far: Knowing this is even, I can eliminate the sin part of the Fourier series. So in general I need to solve for the series cofficients of a(0) and a(n)

for a(o) I get 0. Which makes sense too, even just by inspection of the graph of the function.

My problem is with a(n). My final result is [6/npi]*[sin(npi/2)]. How do I express that second term in my answer. I noticed that the sign alternates every other odd number. a(n) =0 for every even number.

Thanks a bunch
 
Physics news on Phys.org
My new basis of thought is that the a(n) Fourier coefficient can only be positive 6/npi... is this correct... if figure when you add the negative term, the coefficient becomes zero again. At no point can it be negative.

Correct me if I am wrong.

Thanks
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top