Fourier Transform of exponential and heaviside function

katiandss
Messages
2
Reaction score
0

Homework Statement


Compute the Fourier transform of

\phi(t)=(e^(-at))H(t)

where H(t) is the Heaviside step function


Homework Equations





The Attempt at a Solution


I am stuck in an attempt at the solution, I am confused at how the heaviside step function factors in and think that it may just affect the upper and lower limits of the integral, but am not sure. I am looking for direction on how to approach the problem or at least set it up.
 
Physics news on Phys.org
The Fourier Transform is defined on a function f(t) as:

\int_{-\infty}^\infty f(t) e^{2 \pi i t \omega} dt

Now, try plugging in f(t)=e^(-at)H(t) into this definition. Remember that H(t) is defined to be 0 for all negative t and 1 for all positive t, so try splitting the integral into two integrals: one with lower bound -infinity and upper bound 0, and the other with lower bound 0 and the upper bound infinity. Then apply the definition of H(t) and it should become easy.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top