Friction Model for a rolling disk

AI Thread Summary
The discussion centers on the challenges of modeling friction for a rolling disk in mechanical engineering. A paradox arises when using a single point friction model, as it leads to conflicting linear and angular accelerations. Participants suggest that a contact patch model may better represent real-world scenarios, as rolling resistance involves surface deformation rather than a point of contact. The need for actual formulations, including force distribution on the contact patch and rolling resistance torque, is emphasized for further analysis. The conversation highlights the importance of accurately modeling friction to resolve these mechanical inconsistencies.
f_nosferatu
Messages
5
Reaction score
0
Hey guys!

I'm doing my B.S thesis (Mech. Eng.) and I've come across the problem of a rolling disk with friction. Imagine a disk in real world rolling on a flat surface with no external force or torque applied to it except for the interaction of the surface (Normal, friction, etc.).

Now, since this is a real world problem, the disk will eventually come to a stop. However, if you write the equilibrium equations for such a disk using the single point friction model, you will come to a paradox: The friction force (let's say it's acting on the contact point in the opposite direction of moving) gives the disk's center of mass a negative linear acceleration, while the moment of the friction force about the center of mass tends to give the disk a positive angular acceleration! (Don't forget that the disk is in pure rolling, so: linear acc. = R * angular acc.)

This is why I need a friction model that doesn't have this bug! I think it should be based on a contact patch instead of a contact point, but I can't go further than that by myself. Can anyone help?

Thanks!
 
Physics news on Phys.org
Why would the single friction point result in a negative acceleration of the center of mass? It appears that what you've decribed is a wheel rolling along a surface with no losses, therefore no linear or angular deceleration. The only time you'd have linear deceleration and angular acceleration is if the wheel was sliding as well as rolling.

It seems to me that rolling resistance requires some type of lossy deformation, that involves a contact patch area, as opposed to an infinitely thin contact point.
 
f_nosferatu said:
However, if you write the equilibrium equations for such a disk using the single point friction model, you will come to a paradox: The friction force (let's say it's acting on the contact point in the opposite direction of moving) gives the disk's center of mass a negative linear acceleration, while the moment of the friction force about the center of mass tends to give the disk a positive angular acceleration! (Don't forget that the disk is in pure rolling, so: linear acc. = R * angular acc.)
If the disk is rolling along a horizontal surface, the required static friction to maintain the motion (in that simple model you refer to) is zero. It's in equilibrium; No force is required to maintain constant velocity.

What you need to consider is rolling friction, due to the deformation of the surfaces. Here's a link to get you started: http://webphysics.davidson.edu/faculty/dmb/PY430/Friction/rolling.html"
 
Last edited by a moderator:
Thanks a lot you both!

Doc Al: This is exactly what I need, but the link you provided is just the theory. I need actual formulations, whether numerical or analytical. For example, a function for the force distribution on the contact patch (as in the 3rd diagram of the link) could prove to be really useful. I know I can use the simple formula of [Frr=Crr*N] for rolling resistance force, but that won't help me with the rolling resistance torque. Could you provide any further help?
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top