Frictional Forces: Find Max F for No Slippage of m1 on m2

  • Thread starter Thread starter zhaos
  • Start date Start date
  • Tags Tags
    Forces
AI Thread Summary
The discussion revolves around determining the maximum force, F, that can be applied to block 2 without causing block 1 to slip on top of it, given a coefficient of static friction, mu. The user initially derived the equation F = g * mu (m1 + m2) and questioned the validity of their reasoning, later confirming that their calculations were correct. When considering the scenario where block 1 does slip, the conversation shifts to using the coefficient of kinetic friction, mu k, and recognizing that the accelerations of the two blocks would differ. The final consensus emphasizes the importance of distinguishing between the accelerations of the blocks when slipping occurs. Overall, the user successfully navigates through the problem and clarifies their understanding of frictional forces in this context.
zhaos
Messages
15
Reaction score
0
Hi all, I am studying for an exam and changed a practice problem by putting the force on the bottom block (you'll see). I just wanted to check if my thinking is correct.

Homework Statement


Two blocks sit on top of each other, block 1 (m1) on top of block 2 (m2), on a frictionless surface. There is friction between the two blocks, coefficient of static friction mu. If a horizontal force, F, is applied to the block 2, what is the greatest magnitude of F that can be applied such that block 1 does not slip?

Homework Equations


Sum of forces = ma

The Attempt at a Solution


We mainly need to concern ourselves with the horizontal physics.
Is it valid that I consider the forces on block 2 and the forces on block 1?
Block 2: F - m1 * g * mu = m2 * a
Block 1: m1 * g * mu = m1 * a
Also, F = (m1 + m2)a

So then, I used equations for block 1 and block 2, to solve for F. I got F = g * mu (m1 + m2). Looks like F = (m1 + m2)a isn't very useful.

Is this the right reasoning and the right answer?

Perhaps the weird thing for me is that let's say I use the equation for block 2 and the equation F = (m1 + m2)a. If I substitute in (m1 + m2)a for F, then I can solve for a and get g * mu. If I substitute F / (m1+m2) for a, and solve for F, I get a much more complex expression [m1 * g * mu (m1 + m2)] / (m1 + 2*m2). I wonder if this is the same? It works out dimensionally, but not numerically if I choose random values for m1 and m2. What did I do wrong?

update again: oh oh. no I guess it's right, I did the math wrong. The third way solving for F does give the same answer. Never mind.

so i think what i did is right..

But what about this complexity? Let's say F were great enough for the top block to slip. How would I consider the forces in such a situation, given mu k and mu s?

Thanks.
 
Last edited:
Physics news on Phys.org


zhaos said:
Hi all, I am studying for an exam and changed a practice problem by putting the force on the bottom block (you'll see). I just wanted to check if my thinking is correct.

Homework Statement


Two blocks sit on top of each other, block 1 (m1) on top of block 2 (m2), on a frictionless surface. There is friction between the two blocks, coefficient of static friction mu. If a horizontal force, F, is applied to the block 2, what is the greatest magnitude of F that can be applied such that block 1 does not slip?

Homework Equations


Sum of forces = ma


The Attempt at a Solution


We mainly need to concern ourselves with the horizontal physics.
Is it valid that I consider the forces on block 2 and the forces on block 1?
Block 2: F - m1 * g * mu = m2 * a
Block 1: m1 * g * mu = m1 * a
Also, F = (m1 + m2)a

So then, I used equations for block 1 and block 2, to solve for F. I got F = g * mu (m1 + m2). Looks like F = (m1 + m2)a isn't very useful.

Is this the right reasoning and the right answer?

Perhaps the weird thing for me is that let's say I use the equation for block 2 and the equation F = (m1 + m2)a. If I substitute in (m1 + m2)a for F, then I can solve for a and get g * mu. If I substitute F / (m1+m2) for a, and solve for F, I get a much more complex expression [m1 * g * mu (m1 + m2)] / (m1 + 2*m2). I wonder if this is the same? It works out dimensionally, but not numerically if I choose random values for m1 and m2. What did I do wrong?

update again: oh oh. no I guess it's right, I did the math wrong. The third way solving for F does give the same answer. Never mind.

so i think what i did is right..
Yes, good. The extra equation serves as a good check that you did your work correctly when using the other 2 equations.
But what about this complexity? Let's say F were great enough for the top block to slip. How would I consider the forces in such a situation, given mu k and mu s?

Thanks.
In that case, the top block slips, so it will have a different acceleration with respect to the ground than the bottom block's acceleration with respect to the ground. The bottom block's acceleration with respect to the ground will depend on what the value of F is...the top block's acceleration with respect to the ground is independent of the value of F. What value would you use for friction, mu k or mu s?
Welcome to PF, zhaos!
 


Hi PhantomJay

Thanks for your reply. Since the block is slipping we would use mu k.
I think the situation is now..
F - muk * m1 g = m2 * a [for block 2]
and
muk * m1 g = m1 * a' [for block 1]
(a' not the same as a)
Ah so I see what you mean about a' being independent of F. Thanks.
 


Yes, that looks very good.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top