Full thermal decomposition of metal oxides?

AI Thread Summary
The discussion focuses on the thermal decomposition of metal oxides, specifically Fe3O4, into their base elements, including the temperature required for approximately 80% decomposition. Key resources mentioned include Ellingham diagrams, which illustrate the temperature and oxygen partial pressure conditions for the decomposition of iron oxides. These diagrams are noted to be particularly useful for understanding the behavior of iron oxides, which are well-studied. Additionally, direct computational methods involving electronic structure calculations are suggested for more precise determinations. A relevant paper from the journal Phys. Rev. B is referenced, which discusses transitions in the PO2-PH2O space, although it may not focus heavily on temperature. The importance of both temperature and oxygen partial pressure in the decomposition process is emphasized, providing a foundation for further investigation into thermal metal production methods.
hellfire2
Messages
3
Reaction score
0
I haven't been able to find much information on the thermal decomposition of metal oxides into their corresponding metals and oxygen. What temperature would Fe3O4 decompose mostly(80%) into its base elements? Additionally, how can this information be determined based upon bond energies/structures for other elements?
For those who are curious, I am looking into methods for producing metals thermally for use where reducers such as carbon are not present in high enough concentrations to be useful.
Thanks!
 
Chemistry news on Phys.org
Check Ellingham diagrams. They provide temperature-oxygen partial pressured regimes for metal oxides. Iron oxides are well-studied. So surely you will find the needed data.

Direct computations, requires full electronic structure calculations coupled with finite temperature effects. I think there was a paper in Phys. Rev. B journal on this calculation for iron oxide. I can try googling it if you are interested.
 
  • Like
Likes hellfire2
Whoops misclicked there. Yeah if you could point me in the right direction for those I would appreciate it. I did look at some of the Ellingham diagrams before but was not too sure about the iron oxides because they seem to run off most of the charts. I will further investigate the paper as well.
 
This Ellingham diagram contains all the decompositions of iron oxides starting from Fe2O3 through Fe3O4, FeO, and eventually to Fe.

http://web.mit.edu/2.813/www/readings/Ellingham_diagrams.pdf

The paper I mentioned cared more about the transitions in the PO2-PH2O space with little regard to temperature, but it may still be useful:
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.83.094112

An arxiv version of the paper is here:
https://arxiv.org/pdf/1101.3105.pdfThe key thing is that the decomposition depends on both temperature and oxygen partial pressure. I hope this helps.
 
  • Like
Likes hellfire2
Useful nucleus said:
This Ellingham diagram contains all the decompositions of iron oxides starting from Fe2O3 through Fe3O4, FeO, and eventually to Fe.

http://web.mit.edu/2.813/www/readings/Ellingham_diagrams.pdf

The paper I mentioned cared more about the transitions in the PO2-PH2O space with little regard to temperature, but it may still be useful:
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.83.094112

An arxiv version of the paper is here:
https://arxiv.org/pdf/1101.3105.pdfThe key thing is that the decomposition depends on both temperature and oxygen partial pressure. I hope this helps.
Thank you very much for this! This helps a bunch!
 
Thread 'How to make Sodium Chlorate by Electrolysis of salt water?'
I have a power supply for electrolysis of salt water brine, variable 3v to 6v up to 30 amps. Cathode is stainless steel, anode is carbon rods. Carbon rod surface area 42" sq. the Stainless steel cathode should be 21" sq. Salt is pure 100% salt dissolved into distilled water. I have been making saturated salt wrong. Today I learn saturated salt is, dissolve pure salt into 150°f water cool to 100°f pour into the 2 gallon brine tank. I find conflicting information about brine tank...
Engineers slash iridium use in electrolyzer catalyst by 80%, boosting path to affordable green hydrogen https://news.rice.edu/news/2025/engineers-slash-iridium-use-electrolyzer-catalyst-80-boosting-path-affordable-green Ruthenium is also fairly expensive (a year ago it was about $490/ troy oz, but has nearly doubled in price over the past year, now about $910/ troy oz). I tracks prices of Pt, Pd, Ru, Ir and Ru. Of the 5 metals, rhodium (Rh) is the most expensive. A year ago, Rh and Ir...
Back
Top