- #1
jdcasey9
- 28
- 0
1. Homework Statement [/b]
If f has a continuous derivative on [a,b], and if P is any partition of [a,b], show that V(f,P)[tex]\leq[/tex] [tex]\int[/tex]ablf'(t)l dt. Hence, Vba[tex]\leq[/tex][tex]\int[/tex]ablf'(t)ldt.
Monotone function [tex]\subset[/tex] BV[a,b]
[tex]\sum[/tex]f(ti+1)-f(ti) = lf(b) - f(a)l
Let P = {a=t0 < t1 < ... < tn}. So if we divide our function into monotone segments we have:
V1(f,P) = [tex]\sum[/tex]f(ti+1)-f(ti) = lf(a1) - f(a)l
V2(f,P) = [tex]\sum[/tex]f(ti+1)-f(ti) = lf(a2) - f(a1)l
.
.
.
Vn(f,P) = [tex]\sum[/tex]f(ti+1)-f(ti) = lf(b)- f(an-1)l
Then, treating this segments independently of the whole, we see that
v1(f,P)= lf(a)-f(a1)l=[tex]\int[/tex]ablf'(t)ldt = lf(a1) -f(a)l
etc.
Adding them all up V(f,P)= [tex]\int[/tex]ablf'(t)l dt, which satisfies our prompt.
If f has a continuous derivative on [a,b], and if P is any partition of [a,b], show that V(f,P)[tex]\leq[/tex] [tex]\int[/tex]ablf'(t)l dt. Hence, Vba[tex]\leq[/tex][tex]\int[/tex]ablf'(t)ldt.
Homework Equations
Monotone function [tex]\subset[/tex] BV[a,b]
[tex]\sum[/tex]f(ti+1)-f(ti) = lf(b) - f(a)l
The Attempt at a Solution
Let P = {a=t0 < t1 < ... < tn}. So if we divide our function into monotone segments we have:
V1(f,P) = [tex]\sum[/tex]f(ti+1)-f(ti) = lf(a1) - f(a)l
V2(f,P) = [tex]\sum[/tex]f(ti+1)-f(ti) = lf(a2) - f(a1)l
.
.
.
Vn(f,P) = [tex]\sum[/tex]f(ti+1)-f(ti) = lf(b)- f(an-1)l
Then, treating this segments independently of the whole, we see that
v1(f,P)= lf(a)-f(a1)l=[tex]\int[/tex]ablf'(t)ldt = lf(a1) -f(a)l
etc.
Adding them all up V(f,P)= [tex]\int[/tex]ablf'(t)l dt, which satisfies our prompt.
Last edited: